Biological Trace Element Research

, Volume 94, Issue 2, pp 105–112

Comparison of serum copper, zinc, calcium, and magnesium levels in preeclamptic and healthy pregnant women

  • Selahattin Kumru
  • Suleyman Aydin
  • Mehmet Simsek
  • Kazim Sahin
  • Mehmet Yaman
  • Gul Ay
Article

Abstract

Deficient or excessive levels of blood trace elements can be an adverse factor in human and animal pregnancy. The aim of this study was to investigate possible differences in the levels of serum magnesium, calcium, copper, and zinc in preeclamptic and healthy pregnant women. Samples were collected from 30 preeclamptic (PE) and 30 healthy pregnant (HP) women. The serum copper concentration was significantly lower in the PE group by 68% (p<0.0001) when compared to the healthy controls. The serum zinc and calcium were 43% and 10% lower in the PE women, respectively (both with p<0.0001), whereas the magnesium concentration showed nonsignificant differences between the two groups. Measurement of these elements may be useful for the early diagnosis of a preeclamptic condition.

Index Entries

Preeclampsia calcium magnesium copper zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Jenkins, B. B. Head, and J. C. Hauth, Severe preeclampsia at <25 weeks of gestation: maternal and neonatal outcomes, Am. J. Obstet. Gynecol. 186, 790–795 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    K. Mahomed, M. A. Williams, G. B. Woelk, et al., Leukocyte selenium, zinc, and copper concentrations in preeclamptic and normotensive pregnant women, Biol. Trace Element Res. 75, 107–118 (2000).CrossRefGoogle Scholar
  3. 3.
    R. K. Vyas, A. P. Gupta, A. Gupta, and A. K. Aeron, Serum copper, zinc, magnesium and calcium levels in various human diseases, Indian J. Med. Res. 76, 301–304 (1982).PubMedGoogle Scholar
  4. 4.
    P. Borella, A. Szilagyi, G. Than, I. Csaba, A. Giardino, and F. Facchinetti, Maternal plasma concentrations of magnesium, calcium, zinc and copper in normal and pathological pregnancies. Sci. Total Environ. 99, 67–76 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Adam, E. Malatyalioglu, M. Alvur, and C. Talu, Magnesium, zinc and iron levels in pre-eclampsia J. Matern. Fetal Med. 10, 246–250 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    F. Zhao, Ca, Mg, Cu and Zn contents of the maternal and umbilical cord serum in pregnancy-induced hypertension, Zhonghua Fu Chan Ke Za Zhi 24, 212–214 (1989).PubMedGoogle Scholar
  7. 7.
    P. Kiilholma, R. Paul, P. Pakarinen, and M. Gronroos, Copper and zinc in pre-eclampsia. Acta Obstet. Gynecol. Scand. 63, 629–631 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Apgar, Zinc and reproduction, Annu. Rev. Nutr. 5, 43–68 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    F. F Cherry, E. A. Bennett, G. S. Bazzano, L. K. Johnson, G. J. Fosmire, and H. K Batson, Plasma zinc in hypertension/toxemia and other reproductive variables in adolescent pregnancy, Am. J. Clin. Nutr. 34, 2367–2375 (1981).PubMedGoogle Scholar
  10. 10.
    K. Prema, Predictive value of serum copper and zinc in normal and abnormal pregnancy, Indian J. Med. Res. 71, 554–560 (1980).PubMedGoogle Scholar
  11. 11.
    G. Ajayi, Concentration of calcium, magnesium, copper and iron during normal and EPH-gestosis pregnancy, Trace Element Med. 10, 151–152 (1993).Google Scholar
  12. 12.
    N. O. Malas and Z. M. Shurideh, Does serum calcium in pre-eclampsia and normal pregnancy differ? Saudi Med. J. 22, 868–871 (2001).PubMedGoogle Scholar
  13. 13.
    J. R Steinert, A. W. Wyatt, L. Poston, R. Jacob, and G. E. Mann, Preeclampsia is associated with altered Ca2+ regulation and NO production in human fetal venous endothelial cells, FASEB J. 16, 721–738 (2002).PubMedGoogle Scholar
  14. 14.
    K. Kisters, W, Niedner, I. Fafera, and W. Zidek, Plasma and intracellular Mg2+ concentrations in pre-eclampsia, J. Hypertens. 8, 303–306 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    L. A. Villanueva, A. Figueroa, and S. Villanueva, Blood concentrations of calcium and magnesium in women with severe pre-eclampsia, Ginecol. Obstet. Mex. 69, 277–281 (2001).PubMedGoogle Scholar
  16. 16.
    R. Sanders, A. Konijnenberg, H. J. Huijgen, H. Wolf, K. Boer, and G. T. Sanders, Intracellular and extracellular, ionized and total magnesium in pre-eclampsia and uncomplicated pregnancy, Clin. Chem. Lab. Med. 37, 55–59 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Neri, B. Eckerling, and C. Bahary, The copper and copper oxidase content of maternal and infant umbilical arterial and venous blood serum at delivery, Gynaecologia 168, 40–48 (1969).PubMedGoogle Scholar
  18. 18.
    J. A. O’Leary, G. S. Novalis, and G. J. Vosburgh, Maternal serum copper concentrations in normal and abnormal gestations, Obstet. Gynecol. 28, 112–117 (1966).PubMedGoogle Scholar
  19. 19.
    S. Friedman, C. Bahary, B. Eckerling, and B. Gans, Serum copper level as an index of placental function, Obstet. Gynecol. 33, 189–194 (1969).PubMedGoogle Scholar
  20. 20.
    S. Kharb, Lipid peroxidation in pregnancy with pre-eclampsia and diabetes, Gynecol. Obstet. Invest. 50, 113–116 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    C. A. Kumar and U. N. Das, Lipid peroxides, anti-oxidants and nitric oxide in patients with pre-eclampsia and essential hypertension, Med. Sci. Monit. 6, 901–907 (2000).PubMedGoogle Scholar
  22. 22.
    Y. Wang and S. W. Walsh, Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia, Placenta 22, 206–212 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Bayhan, Y. Atamer, A. Atamer, B. Yokus, and Y. Baylan, Significance of changes in lipid peroxides and antioxidant enzyme activities in pregnant women with preeclampsia and eclampsia, Clin. Exp. Obstet. Gynecol. 27, 142–146 (2000).PubMedGoogle Scholar
  24. 24.
    J. R. Prohaska and B. Brokate, Lower copper, zinc-superoxide dismutase protein but not mRNA in organs of copper-deficient rats, Arch. Biochem. Biophys. 393, 170–176 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    O. H. Gurer, H. Ozgunes, and M. S. Beksac, Correlation between plasma malondialdehyde and ceruloplasmin activity values in preeclamptic pregnancies, Clin. Biochem. 34, 505–506 (2001).CrossRefGoogle Scholar
  26. 26.
    A.F.F. Adeniyi, The implication of hypozincemia in pregnancy, Acta Obstet. Gynecol. Scand. 66, 579–581 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    J. C. Chisolm and C. R. Handorf, Zinc, cadmium, metallothionein, and progesterone: do they participate in the etiology of pregnancy induced hypertension? Med. Hypotheses 17, 231–242 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Diaz, A. Halhali, C. Luna, L. Diaz, E. Avila, and F. Larrea, Newborn birth weight correlates with placental zinc, umbilical insulin-like growth factor I, and leptin levels in preeclampsia, Arch. Med. Res. 33, 40–47 (2002).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Flynn, W. J. Pories, W. H. Strain, O. A. Hill, Jr., and R. B. Fratianne, Rapid serum-zinc depletion associated with corticosteroid therapy, Lancet 27, 1169–1172 (1971).CrossRefGoogle Scholar
  30. 30.
    M. N. Soltan and O. M. Jenkins, Maternal and fetal zinc concentration and fetal abnormality, Br. J. Obstet. Gynaecol. 89, 56 (1982).PubMedGoogle Scholar
  31. 31.
    B. A. Bassiouni, A. I. Foda, and A. A. Rafei, Maternal and fetal plasma zinc in preeclampsia, Eur. J. Obstet. Gynecol. Reprod. Biol. 9, 75–80 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    M. I. Yousef, H. A. El Hendy, F. M. El-Demerdash, and E. I Elagamy, Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats, Toxicology 175, 223–234 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Cunzhi, J. Jiexian, Z. Xianwen, G. Jingang, and H. Suling, Classification and prognostic value of serum copper/zinc ratio in Hodgkin’s disease, Biol. Trace Element Res. 83, 133–138 (2001).CrossRefGoogle Scholar
  34. 34.
    I. Yucel, F. Arpaci, A. Ozet, et al., Serum copper and zinc levels and copper/zinc ratio in patients with breast cancer, Biol. Trace Element Res. 40, 31–38 (1994).CrossRefGoogle Scholar
  35. 35.
    A. Ajose, B. Fasubaa, J. I. Anetor, D. A. Adelekan, and N. O. Makinde, Serum zinc and copper concentrations in Nigerian women with normal pregnancy, Niger. Postgrad. Med. J. 8, 161–164 (2001).PubMedGoogle Scholar
  36. 36.
    P. A. Taufield, K. L. Ales, L. M. Resnick, M. L. Druzin, J. M. Gertner, and J. H. Laragh, Hypocalciuria in preeclampsia, N. Engl. J. Med. 19, 715–718 (1987).CrossRefGoogle Scholar
  37. 37.
    J. M Belizan, J. Villar, Z. Zalazar, L. Rojas, D. Chan, and G. Bryce, Preliminary evidence of the effect of calcium supplementation on blood pressure in normal pregnant women, Am. J. Obstet. Gynecol. 146, 175–180 (1983).PubMedGoogle Scholar
  38. 38.
    J. Villar and J. M. Belizan, Same nutrient, different hypotheses: disparities in trials of calcium supplementation during pregnancy, Am. J. Clin. Nutr. 71(5 Suppl.), 1375–1379 (2000).Google Scholar
  39. 39.
    S. M. Handwerker, B. T. Altura, and B. M Altura, Serum ionized magnesium and other electrolytes in the antenatal period of human pregnancy, J. Am. Coll. Nutr. 15, 36–43 (1996).Google Scholar
  40. 40.
    O. O. Makinde, F. Amole, and S. O. Ogunniyi, Serum copper, zinc and magnesium in maternal and cord blood at delivery, West Afr. J. Med. 10, 168–170 (1991).PubMedGoogle Scholar
  41. 41.
    C. A. Standley, J.E. Whitty, B. A. Mason, and D. B. Cotton, Serum ionized magnesium levels in normal and preeclamptic gestation, Obstet. Gynecol. 89, 24 (1997).PubMedCrossRefGoogle Scholar
  42. 42.
    Q. Qi, W. Li, and Z. Wang, Magnesium and calcium concentration of peripheral serum and mononuclear cells in patients with pregnancy induced hypertension, Zhonghua Fu Chan Ke Za Zhi 32, 15–18 (1997).PubMedGoogle Scholar
  43. 43.
    K. Kisters, J. Korner, F. Louwen, et al., Plasma and membrane Ca2+ and Mg2+ concentrations in normal pregnancy and in preeclampsia, Gynecol. Obstet. Invest. 46, 158–163 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Selahattin Kumru
    • 1
  • Suleyman Aydin
    • 2
  • Mehmet Simsek
    • 1
  • Kazim Sahin
    • 3
  • Mehmet Yaman
    • 4
  • Gul Ay
    • 1
  1. 1.Department of Obstetric GynecologyFirat University Medical SchoolElazigTurkey
  2. 2.Department of BiochemistryFirat University Medical SchoolElazigTurkey
  3. 3.Department of Animal NutritionFirat University Medical SchoolElazigTurkey
  4. 4.Department of Chemistry, Faculty of ScienceFirat University Medical SchoolElazigTurkey

Personalised recommendations