Biological Trace Element Research

, Volume 92, Issue 3, pp 231–244 | Cite as

Accumulation of aluminum in rat brain

Does it lead to behavioral and electrophysiological changes?
  • Terken Baydar
  • András Papp
  • Ahmet Aydin
  • Laszlo Nagymajtenyi
  • Horst Schulz
  • Askin Isimer
  • Gonul Sahin


The present study was undertaken to examine possible aluminum (Al) accumulation in the brain of rats and to investigate whether subchronic exposure to the metal leads to behavioral and neurophysiological changes in both treated and control groups. Each of the groups consisted of 10 animals. Aluminum chloride (AlCl3) at a low (50 mg/kg/d) or high (200 mg/kg/d) dose was applied to male Wistar rats by gavage for 8 wk. Al-free water by gavage was given to the control group throughout the experiment. Behavioral effects were evaluated by open-field (OF) motor activity and by acoustic startle response (ASR). Electrophysiological examination was done by recording spontaneous activity and sensory-evoked potentials from the visual, somatosensory, as well as auditory cortex. The Al content of each whole brain was determined by electrothermal atomic absorption spectrophotometry. Subchronic Al exposure slightly caused some changes in the evoked potentials and electrocorticograms and in the OF and ASR performance, but these results were not statistically significant. The brain Al levels of the control and the low and high dose of Al-exposed groups were measured as 0.717±0.208 µg/g (wet weight), 0.963±0.491 µg/g (wet weight) and 1.816±1.157 µg/g (wet weight), respectively.

Index Entries

Aluminum subchronic intake rat behavior electrophysiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. O. Ganrot, Metabolism and possible health-effects of aluminium, Environ. Health Perspect. 65, 363–441 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Massey and D. Taylor, Aluminium in Food and the Environment, Special Publication No. 73, Royal Society of Chemiistry, London (1988).Google Scholar
  3. 3.
    IPCS, Environmental Health Criteria 194, Aluminium, WHO, Geneva (1997).Google Scholar
  4. 4.
    K. A. Winship, Toxicity of aluminium: a historical review, Part 2, Adv. Drug React. Toxical Rev. 12, 177–211 (1993).Google Scholar
  5. 5.
    R. J. Boegman and L. A. Bates, Neurotoxicity of aluminum, Can. J. Physiol. Pharmacol. 62, 1010–1014 (1984).PubMedGoogle Scholar
  6. 6.
    D. R. C. McLachlan, Aluminum and Alzheimer’s disease, Neurobiol. Aging 7, 525–532 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    W. A. Banks and A. J. Kastin, Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier, Neurosci. Biobehav. Rev. 13, 47–53 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    J. C. Murray, C. M. Tanner, and S. M. Sprague, Aluminum neurotoxicity: a reevaluation, Clin. Neuropharmacol. 14, 179–185 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    R. A. Amstrong, J. Anderson, J. D. Cowburn, et al., Aluminium administered in drinking water but not in the diet influences biopterin metabolism in the rodent, Biol. Chem. Hoppe-Seyler 373, 1075–1078 (1992).PubMedGoogle Scholar
  10. 10.
    R. T. Erasmus, J. Savory, M. R. Wills, et al., Aluminum neurotoxicity in experimental animals, Ther. Drug Monit. 15, 588–592 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    U. De Boni, A. Otvos, J. W. Scott, et al., Neurofibrillary degeneration induced by systemic aluminum, Acta Neuropath. (Berl.) 35, 285–294 (1976).Google Scholar
  12. 12.
    W. A. Banks and A. J. Kastin, Aluminium increases permeability of the blood-brain barrier to labelled dsip and β-endorphin: possible implications for senile and dialysis dementia, Lancet ii, 1227–1229 (1983).CrossRefGoogle Scholar
  13. 13.
    G. Sahin, I. Varol, A. Temizer, et al., Determination of aluminum levels in the kidney, liver, and brain of mice treated with aluminum hydroxide, Biol. Trace Element Res. 41, 129–135 (1994).CrossRefGoogle Scholar
  14. 14.
    R. L. Commissaris, J. J. Cordon, S. Sprague, et al., Behavioral changes in rats after chronic aluminum and parathyroid hormone administration, Neurobehav. Toxicol. Teratol. 4, 403–410 (1982).PubMedGoogle Scholar
  15. 15.
    G. Sahin, T. Taskin, K. Benli, et al., Impairment of motor coordination in mice after ingestion of aluminum chloride, Biol. Trace Element Res. 50, 79–85 (1995).Google Scholar
  16. 16.
    G. M. Berlyne, R. Yagil, J. Ben Ari, et al., Aluminium toxicity in rats, Lancet i, 564–567 (1972).CrossRefGoogle Scholar
  17. 17.
    A. C. Alfrey, G. R. LeGendre, and W. D. Kaehny, The dialysis encephalopathy syndrome, New Engl. J. Med. 294, 184–188 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    A. I. Arieff, J. D. Cooper, D. Amstrong, et al., Dementia, renal failure, and brain aluminum, Ann. Intern. Med. 90, 741–747 (1979).PubMedGoogle Scholar
  19. 19.
    I. Dési, Neurological investigation of pesticides in animal experiments, Neurobehav. Toxicol. Teratol. 5, 503–517 (1983).PubMedGoogle Scholar
  20. 20.
    C. Cutrufo, S. Caroli, P. Delle Femmine, et al., Experimental aluminium encephalopathy quantitative EEG analysis of aluminium bioavailability, J. Neurol. Neurosurg. Psychiatry 47, 204–206 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    T. L. Petit, G. B. Biederman, and P. A. McMullan, Neurofibrillary degeneration, dentric dying back, and learning-memory deficits after aluminum administration: implications for brain aging, Exp. Neurol. 67, 152–162 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    V. Bernuzzi, D. Desor, and P. R. Lehr, Effects of prenatal aluminum exposure on neuromotor maturation in the rat, Neurobehav. Toxicol. Teratol. 8, 115–119 (1989).Google Scholar
  23. 23.
    B. M. Thorne, T. Donohoe, K. Lin, et al., Aluminum ingestion and behavior in the longevans rat, Physiol. Behav. 36, 63–67 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    P. I. Otezia, C. L. Keen, B. Han, et al., Aluminum accumulation and neurotoxicity in Swiss-Webster mice after long-term dietary exposure to aluminum and citrate, Metabolism 42, 1296–1300 (1993).CrossRefGoogle Scholar
  25. 25.
    G. S. Zubenko and I. Hanin, Cholinergic and noradrenergic toxicity of intraventricular aluminum chloride in the rat hippocampus, Brain Res. 498, 381–384 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Gaytan-Garcia, H. Kim, and M. J. Strong, Spinal motor neuron neuroaxonal spheroids in chronic aluminum neurotoxicity contain phosphatase-resistant high molecular weight neurofilament, Toxicology 108, 17–24 (1996).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Kumar, Biophasic effects of aluminium on cholinergic enzyme of rat brain, Neurosci. Lett. 248, 121–123 (1998).PubMedCrossRefGoogle Scholar
  28. 28.
    J. R. McDermott, A. I. Smith, M. K. Ward, et al., Brain-aluminium concentration in dialysis encephalopathy, Lancet i, 901–904 (1978).CrossRefGoogle Scholar
  29. 29.
    D. R. C. McLachlan, W. J. Lukiw, and T. P. A. Kruck, New evidence for an active role of aluminum in Alzheimer’s disease, Can. J. Neurol. Sci. 16, 490–497 (1989).PubMedGoogle Scholar
  30. 30.
    G. L. Wenk and K. L. Stemmer, The influence of ingested aluminum upon neorepinephrine and dopamine levels in the rat brain, Neurotoxicology 2, 347–353 (1981).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Terken Baydar
    • 1
  • András Papp
    • 2
  • Ahmet Aydin
    • 3
  • Laszlo Nagymajtenyi
    • 2
  • Horst Schulz
    • 2
  • Askin Isimer
    • 3
  • Gonul Sahin
    • 1
  1. 1.Department of ToxicologyUniversity of Hacettepe, Faculty of PharmacyAnkaraTurkey
  2. 2.Department of Public HealthUniversity of Szeged, Faculty of MedicineSzegedHungary
  3. 3.Department of ToxicologyGulhane Military Medicine AcademyAnkaraTurkey

Personalised recommendations