Advertisement

Biological Trace Element Research

, Volume 91, Issue 2, pp 179–189 | Cite as

Mechanism of physiological effects of titanium leaf sprays on plants grown on soil

  • Stanislav Kužel
  • Martin Hruby
  • Petr Cígler
  • Pavel Tlustoš
  • Phu Van Nguyen
Article

Abstract

Titanium (Ti) has significant biological effects on plants, being beneficial at low and toxic at higher concentrations. From results of our hydroponical experiment with oats, we have recently proposed that the effect called hormesis is the mechanism of Ti action in plants. Here, we present the experiment with oats (Avena sativa L. cv. Zlat’ák) grown on soil where Ti was applied using leaf sprays. Two different soils, three different concentrations of Ti(IV) citrate spray solution (0, 20, and 50 mg Ti/kg), and three different Mg concentrations in each soil were tested. Some physiological parameters (dry and raw weights, top heights, chlorophyll content) and element contents (Mg, Fe, Zn, Mn) were determined. Ti showed considerable effects on all physiological parameters and the element’s contents were determined. Differences between the two different soil types used was only in the strength of the effect of Ti; the trends remained unchanged. Generally, the effect of Ti is considerably weaker if Ti is applied on leaves than if being added to the nutrient solution. Thus, we confirm here that the action of Ti on plants could be explained by the hormesis effect.

Index Entries

Titanium oats plant magnesium manganese zinc iron chlorophyll leaf spray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Yaghoubi, Ch. W. Schwetert, and J. P. McCue, Biological roles of titanium, Biol. Trace Element Res. 78, 205–217 (2000).CrossRefGoogle Scholar
  2. 2.
    I. Pais, The biological importance of titanium, J. Plant Nutr. 6, 3–131 (1983).Google Scholar
  3. 3.
    J. L. Giménez, F. Martínez-Sánchez, A. Moreno, et al., Titanium in plant nutrition. III. Effect of Ti (IV) on yield of Capsicum anuum, L., in Proceedings of III Symposium Nacional de Nutrición Mineral de las Plantas, SPIC-UIB, eds., Nutrición Mineral bajo condiciónes de Estrés, pp. 123–128 (1990).Google Scholar
  4. 4.
    L. Simon, A. Balogh, F. Hajdu, et al., Effect of titanium on growth and photosynthetic pigment composition of Chlorella pyrenoidosa (green alga). II. Effect of titanium ascorbate on pigment content and chlorophyll metabolism of Chlorella, in New Results in the Research of Hardly Known Trace Elements and Their Role in the Food Chain, I. Pais, ed., University of Horticultural and Food Science, Budapest, pp. 87–101 (1988).Google Scholar
  5. 5.
    M. F. Carvajal, F. Martínez-Sánchez, and C. F. Alcaraz, Effect of Ti(IV) on some physiological activity indicators of Capsicum anuum L. plants, J. Hortic. Sci. 69, 427–432 (1994).Google Scholar
  6. 6.
    M. Hrubý, P. Cígler, and S. Kužel, Titanium in plant nutrition. The contribution to understanding the mechanism of titanum action in plants, J. Plant Nutr. 25, 577–598 (2002).CrossRefGoogle Scholar
  7. 7.
    K. Konishi and T. Tsuge, Inorganic constituents of green-manure crops. II, J. Agric. Chem. Soc. 12, 916–930 (1936).Google Scholar
  8. 8.
    M. Hrubý, S. Kužel, and P. Cígler, New explanation of titanium effects on plants, in Proceedings of the 20th Workshop on Macroelements and Trace Elements, Jena, pp. 304–308 (2000).Google Scholar
  9. 9.
    P. Cígler, M. Hrubý, and S. Kužel, Influence of some fertilizer chemical properties on magnesium resorption from leaf surface of oats, J. Plant Nutr. 22, 1241–1251 (1999).Google Scholar
  10. 10.
    A. Mehlich, Mehlich No. 3 soil test extractant: a modification of Mehlich No. 2, Commun. Soil Sci. Plant Anal. 15, 1409–1416 (1984).Google Scholar
  11. 11.
    J. Zbíral, Comparison of methods for soil pH determination, Rostl. Vyroba 47, 463–466 (2001) (in Czech).Google Scholar
  12. 12.
    J. R. Sims and V. A. Haby, Simplified colorimetric determination of soil organic matter, Soil. Sci. 112, 137–141 (1971).CrossRefGoogle Scholar
  13. 13.
    J. Száková, P. Tlustoš, J. Balík, et al., Efficiency of extractans to release As, Cd, and Zn from main soil compartments, Analysis 28, 808–812 (2000).CrossRefGoogle Scholar
  14. 14.
    J. L. Lopez-Moreno, J. L. Giménez, A. Moreno, et al., Plant biomass and fruit yield induction by Ti(IV) and P-stressed pepper crops, Fertil. Res. 43, 131–136 (1996).CrossRefGoogle Scholar
  15. 15.
    S. Bereswill, S. Greiner, A. H. M. Van Vliet, et al., Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori, J. Bacteriol. 182, 5948–5953 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    C. W. MacDiarmid and R. C. Gardner, Al toxicity in yeast. A role for Mg?, Plant Physiol. 112, 1101–1109 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    J. F. Ma, Role of organic acids in detoxification of aluminum in higher plants, Plant Cell Physiol. 41, 383–390 (2000).PubMedGoogle Scholar
  18. 18.
    L. Simon, A. Balogh, F. Hajdu, et al., Effect of titanium on the carbohydrate content and phosphofructokinase activity of tomato, in New Results in the Research of Hardly Known Trace Elements and Their Importance in the International Geosphere-Biosphere Program, I. Pais, ed., University of Horticultural and Food Science, Budapest, pp. 49–84 (1990).Google Scholar
  19. 19.
    E. Stefanovits-Banyai, E. Sardi, I. Kerepesi, et al., The protective effect of titanium ascorbate in plant stress caused by some heavy metals, in Human: New Perspectives. Proceedings of the 2nd International Symposium on Trace Elements, S. Emidou-Pollet, ed., Athens, pp. 239–250 (2000).Google Scholar
  20. 20.
    K. Lesko, E. Stefanovits-Banyai, I. Pais, et al., Effect of cadmium and titanium ascorbate stress on polyamine content of wheat seedlings, in Proceedings of the 20th Workshop on Macroelements and Trace Elements, Jena, pp. 819–824 (2000).Google Scholar
  21. 21.
    T. Ozaki, S. Enomoto, Y. Minai, et al., Beneficial effect of rare earth elements on the growth of Dryopteris erythrosora, J. Plant Physiol. 156, 330–334 (2000).Google Scholar
  22. 22.
    F. Kiss, G. Deak, M. Feher, et al., The effect of titanium and gallium in photosynthetic rate of algae, J. Plant Nutr. 8, 825–832 (1985).Google Scholar
  23. 23.
    L. Simon, M. Fodor, and I. Pais, Effects of zirconium on the growth and photosynthetic pigment composition of Chlorella pyrenoidosa green algae, J. Plant Nutr. 24, 159–174 (2001).CrossRefGoogle Scholar
  24. 24.
    K. J. Blackwell, J. M. Tobin, and S. V. Avery, Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 47, 180–184 (1997).PubMedCrossRefGoogle Scholar
  25. 25.
    C. W. MacDiarmid and R. C. Gardner, Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion, J. Biol. Chem. 273, 1727–1732 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    E. V. Emelyanova, Relationship between magnesium and iron uptake by the yeast Candida ethanolica, Process. Biochem. 36, 517–523 (2001).CrossRefGoogle Scholar
  27. 27.
    V. Romheld and F. Awad, Significance of root exudates in acquisition of heavy metals from a contaminated calcareous soil by graminaceous species, J. Plant Nutr. 23, 1857–1866 (2000).Google Scholar
  28. 28.
    S. Kawai, S. Kamei, and S. Alam, Amelioration of manganese toxicity in barley with iron, J. Plant Nutr. 24, 1421–1433 (2001).CrossRefGoogle Scholar
  29. 29.
    T. Zaharieva and V. Romheld, Specific Fe(II) uptake system in strategy I plants inducible under Fe deficiency, J. Plant Nutr. 23, 1733–1744 (2000).Google Scholar
  30. 30.
    L. Messori, P. Orioli, V. Banholzer, et al., Formation of titanium(IV) transferrin by reaction of human serum apotransferrin with titanium complexes, FEBS Lett. 442, 157–161 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    W. Schmidt, From faith to fate: ethylene signaling in morphogenic responses to P and Fe deficiency, J. Plant Nutr. Soil Sci. 164, 147–154 (2001).CrossRefGoogle Scholar
  32. 32.
    H. G. Daood, P. Biacs, M. Feher, et al., Effect of titanium on the activity of lipoxygenase, J. Plant Nutr. 11, 505–16 (1988).Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Stanislav Kužel
    • 1
  • Martin Hruby
    • 2
  • Petr Cígler
    • 3
  • Pavel Tlustoš
    • 4
  • Phu Van Nguyen
    • 4
  1. 1.Department of General Plant ProductionFaculty of Agriculture, South Bohemian UniversityČeské BudějoviceCzech Republic
  2. 2.Institute of Macromolecular ChemistryPragueCzech Republic
  3. 3.Department of Analytical ChemistryInstitute of Chemical TechnologyPragueCzech Republic
  4. 4.Department of Agrochemistry and Plant NutritionCzech University of AgriculturePragueCzech Republic

Personalised recommendations