Advertisement

Biological Trace Element Research

, Volume 89, Issue 1, pp 53–64 | Cite as

Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens

  • Kazim Sahin
  • Nurhan Sahin
  • Muhittin Onderci
  • Ferit Gursu
  • Gurkan Cikim
Article

Abstract

This study was conducted to determine the effects of chromium (chromium picolinate, CrPic) supplementation at various levels (0, 200, 400, 800, or 1200 µ/kg of diet) on performance, carcass characteristics, and some serum metabolites of broiler chickens (Ross) reared under heat stress (32.8°C). One hundred fifty old male broilers were randomly assigned to 5 treatment groups, 3 replicates of 10 birds each. The birds were fed either a control diet or the control diet supplemented with either 200, 400, 800, or 1200 µg Cr/kg of diet. Increased supplemental chromium resulted in an increase in body weight (p=0.01, linear), feed intake (p≤0.05, linear), and carcass characteristics (p≤0.05, linear) and improved feed efficiency (p=0.01, linear). Increased supplemental chromium decreased serum corticosterone concentration (p=0.01, linear), whereas it increased serum insulin and T3 and T4 concentrations (p=0.01). Serum glucose and cholesterol concentrations decreased (p=0.01), whereas protein concentrations increased linearly (p=0.001) with higher dietary chromium supplementation. Results of the present study conclude that a supplementation of diet with chromium at 1200 ppb can alleviate the detrimental effects of heat stress in broiler.

Index Entries

Chromium heat stress performance thyroid corticosterone broilers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Donkoh, Ambient temperature: a factor affecting performance and physiological response of broiler chickens, Int. J. Biometeorol. 33, 259–265 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    H. S. Siegel, Stress, strains and resistance, Br. Poult. Sci. 36, 3–20 (1995)PubMedGoogle Scholar
  3. 3.
    S. Hurwitz, M. Weiselberg, U. Eisner, I. Bartov, G. Riesenfeld, M. Sharvit, et al., The energy requirements and performance of growing chickens and turkeys, as affected by environmental temperature, Poult. Sci. 59, 2290–2299 (1980).Google Scholar
  4. 4.
    S. E. Evans and D. L. Ingram, The effect of ambient temperature upon the secretion of thyroxine in the young pig, J. Physiol. 264, 511–519 (1977).PubMedGoogle Scholar
  5. 5.
    S. J. Bowen and S. J. Washburn, Thyroid and adrenal response to heat stress in chickens and quail differing in heat tolerance, Poult. Sci. 64, 149–154 (1985).PubMedGoogle Scholar
  6. 6.
    F. M. A. McNabb and D. B. King, Thyroid hormones effect on growth development and metabolism, in The Endocrinology of Growth Development and Metabolism in Vertebrates, T. Schreibman et al., eds., Academic Press, NY, Zoological Science Vol. 10, pp. 873–885 (1993).Google Scholar
  7. 7.
    R. W. Heninger, W. S. Newcorner, and R. H. Thayer, The effect of elevated ambient temperatures and the thyroxine secretion rate of chickens, Poult. Sci. 39, 1332–1337 (1960).Google Scholar
  8. 8.
    S. J. Bowen, S. J. Washburn, and T. M. Huston, Involvement of the thyroid gland in the response of the young chicken to heat stress, Poult. Sci. 63, 66–69 (1984).PubMedGoogle Scholar
  9. 9.
    P. E. Hilmann, N. R. Scott, and A. Van Tienhoven, Physiological responses and adaptations to hot and cold environments, in Stress Physiology in Livestock, M.K. Yousef, ed., CRC Press, Boca Raton, FL, pp. 1–71 (1985).Google Scholar
  10. 10.
    F. W. Edens, and H. S. Siegel, Adrenal responses in high and low ACTH response lines of chickens during acute heat stress, Gen. Comp. Endocrinol. 25, 64–73 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    M. E. Ensminger, J. E. Oldfield, and W. Heinemann, Feeds and Nutrition, Ensminger, pp. 108–110 (1990).Google Scholar
  12. 12.
    R. A. Anderson, Chromium. Trace Elements in Human and Animal Nutrition, Academic, New York, pp. 225–244 (1987).Google Scholar
  13. 13.
    R. A. Anderson, Stress effects on chromium nutrition of humans and farm animals, in Biotechnology in Feed Industry, T. P. Lyons, and K. A. Jacques, eds., Nottingham. University Press, Nothingam, pp. 267–274 (1994).Google Scholar
  14. 14.
    M. O. Smith and R. G. Teeter, Potassium balance of the 5 to 8-week old broiler exposed to constant heat or cycling high temperature stress and the effects of supplemental potassium chloride on body weight gain and feed efficiency, Poult. Sci. 66, 487–492 (1987).PubMedGoogle Scholar
  15. 15.
    O. El Husseiny and C. R. Creger, Effect of ambient temperature on mineral retention and balance of the broiler chicks, Poult. Sci. 60 (Suppl. 1), 1651 (1981) (abstract).Google Scholar
  16. 16.
    N. Sahin, M. Onderci, and K. Sahin, Effects of dietary chromium and zinc on egg production, egg quality and some blood metaboites of laying hens reared under low ambient temperature, Biol. Trace Element Res., in press.Google Scholar
  17. 17.
    K. Sahin, O. Kucuk, and N. Sahin, Effects of dietary chromium picolinate supplementation on performance, insulin and corticostrerone in laying hens under low ambient temperature, J. Anim. Physiol. Anim. Nutr. 85, 142–147 (2001).CrossRefGoogle Scholar
  18. 18.
    K. Sahin, O. Kucuk, N. Sahin, and O. Ozbey, Effects of dietary chromium picolinate supplementation on egg production, egg quality, and serum concentrations of insulin, corticostrerone and some metabolites of Japanese quails, Nutr. Res. 21, 1315–1321 (2001).CrossRefGoogle Scholar
  19. 19.
    D. D. Gallaher, A. S. Csallany, D. W. Shoeman, and J. M. Olson, Diabetes increases excretion of urinary malondehyde cojugates in rats, Lipids 28, 663–666 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    H. G. Preuss, P. L. Grojec, S. Lieberman, and R. A. Anderson, Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats, Clin. Nephrol. 47(5), 325–330 (1997).PubMedGoogle Scholar
  21. 21.
    S. Okado, H. Tsukada, and H. Ohba, Enhancement of nucleolar RNA synthesis by chromium(III) in regenerating rat liver, J. Inorg. Biochem. 21, 113–116 (1984).CrossRefGoogle Scholar
  22. 22.
    M. C. Linder, Nutrition and metabolism of the trace elements, in Nutritional Biochemistry and Metabolism with Clinical Applications, M. C. Linder, ed., Elsevier, New York, pp. 215–276 (1991).Google Scholar
  23. 23.
    R. J. Doisy, Effect of nutrient deficiencies in animals; chromium, in CRC Handbook Series in Nutrition and Food. Section E: Nutritional Disorders Vol: 2 Effect of Nutrient Deficiencies in Animals, M. Rechcigi, Jr., ed., CRC West Palm Beach, FL, pp. 341–342, (1978).Google Scholar
  24. 24.
    J. D. Pagan S. G. Jackson, and S. E. Duren, The effect of chromium supplementation on metabolic response to exercise in thoroughbred horses, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Eleventh Annual Symposium. Lyons, T. P. Jacques and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 249–256 (1995).Google Scholar
  25. 25.
    D. N. Mowat, Organic chromium. A new nutrient for stressed animals. In Biotechnology in the Feed Industry: Proceedings of Alltech’s Tenth Annual Symposium. Lyons, T. P. Jacques and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 275–282 (1994).Google Scholar
  26. 26.
    NRC, The Role of Chromium in Animal Nutrition, National Academy Press, Washington, DC (1997).Google Scholar
  27. 27.
    T. F. Lien, Y. M. Horng, and K. H. Yang. Performance, serum characteristics, carcass traits and lipid metabolism of broilers as affected by supplement of chromium picolinate, Br. Poult. Sci. 40(3), 357–361 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    NRC, Nutrient Requirements of Poultry, 9th rev. ed., National Academy Press, Washington, DC (1994).Google Scholar
  29. 29.
    J. P. McMurtry, R. V. Rosebrough, and N. C. Steele, An homologous radioimmunoassay for chicken insulin, Poult. Sci. 62, 697–701 (1983).PubMedGoogle Scholar
  30. 30.
    X. Chang, D. N. Mowat, and G. A. Spiers. Carcass characteristics and tissue-mineral contents of steers fed supplemental chromium, Can. J. Anim. Sci. 72, 663–668 (1992).CrossRefGoogle Scholar
  31. 31.
    AOAC, Official Methods of Analysis Association of Agricultural Chemists, Washington DC (1990).Google Scholar
  32. 32.
    SAS Institute, SAS® User’s Guide: Statistics, SAS Institute Inc., Cary, NC (1996).Google Scholar
  33. 33.
    J. S., Borel, T. C., Majerus, M., Polansky, P. B., Moser, and R. A. Anderson. Chromium intake and urinary chromium excretion of trauma patients, Biol. Trace Element Res. 6, 317–321 (1984).CrossRefGoogle Scholar
  34. 34.
    J. S. Sands and M. O. Smith, Broilers in heat stress conditions: effects of dietary manganese proteinate or chromium picolinate supplementation, J. Appl. Poult. Res. 8, 280–287 (1999).Google Scholar
  35. 35.
    N. C. Steele and R. W. Rosebrough, Effect of trivalent chromium on hepatic lipogenesis by the turkey poult, Poult. Sci. 60, 617–622 (1981).PubMedGoogle Scholar
  36. 36.
    C. H. Lukaski, Chromium as a supplement, Annu. Rev. Nutr. 19, 279–302 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    K. W. Mooney and G. L. Cromwell, Efficacy of Chromium picolinate and chromium chloride as potential carcass modifiers in swine, J. Anim. Sci. 73, 3351–3357 (1997).Google Scholar
  38. 38.
    M. D. Lindeman, Organic chromium: The missing link in farm animal nutrition, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Twelfth Annual Symposium. Lyons, T. P. Jacgues and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 299–314 (1996).Google Scholar
  39. 39.
    U. Weser and U. J. Koolman. Untersuchungen zur proteinbiosynthese in Rattenieberzellerkernen, Hoppe Seyler’s Z. Physiol. Chem. 350, 1273–1278 (1969).PubMedGoogle Scholar
  40. 40.
    S. Okado, M. Suzuki, and H. Ohba, Enhancement of ribonucleic acid synthesis by chromium (III) in mouse liver, J. Inorg. Biochem. 19, 95–103 (1983).CrossRefGoogle Scholar
  41. 41.
    J. B. Vincent, The biochemistry of chromium, J. Nutr. 130, 715–718 (2000).PubMedGoogle Scholar
  42. 42.
    J. B. Vincent, The bioinorganic chemistry of chromium (III), Polyhedron, 20(1–2), 1–26 (2001).CrossRefGoogle Scholar
  43. 43.
    J. D. May, J. W. Deaton, F. N. Reece, and S. L. Branton. Effect of acclimation and heat stress on thyroid hormone concentration, Poult. Sci. 65, 1211–1213 (1986).PubMedGoogle Scholar
  44. 44.
    A. Iqbal, E. Decuypere, El. A. Abd Azim, and El. A. E. R. Kühn, Pre- and post-hatch high temperature exposure affects the thyroid hormones and corticostrenone responses to acute heat stress in growing chicken (Gallus domestica), J. Thermal Biol. 15, 149–153 (1990).CrossRefGoogle Scholar
  45. 45.
    S. Yahav, A. Straschnow, I. Plavnik, and S. Hurwitz, Blood system response of chickens to changes in environmental temperature, Poult. Sci. 76, 627–633 (1997).PubMedGoogle Scholar
  46. 46.
    S. Yahav, The effect of constant and diurnal cyclic temperatures on performance and blood system of young turkeys, J. Thermal Biol. 24, 71–78 (1999).CrossRefGoogle Scholar
  47. 47.
    T. M. Huston and J. L. Carmon, The influence of high environmental temperature on thyroid size of domestic fowl, Poult. Sci. 41, 175–183 (1962).Google Scholar
  48. 48.
    W. P. Jonier and T. M. Huston, The influence of high environmental temperature on immature domestic fowl, Poult. Sci. 36, 973–978 (1957).Google Scholar
  49. 49.
    R. W. Rosebrough and N. C. Steele, Effect of supplemental dietary chromium or nicotic acid on carbonhydrate metabolism during basal, starvation and refeeding periods in poults, Poult. Sci. 60, 407–411 (1981).PubMedGoogle Scholar
  50. 50.
    T. G. Page, L. L. Southern, T. L. Ward, and D. L. Thompson, Jr., Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs, J. Anim. Sci. 71, 656–670 (1993).PubMedGoogle Scholar
  51. 51.
    J. L. Burton, B. A. Mallard, and D. N. Mowat. Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows, J. Anim. Sci. 71, 1532–1536 (1993).PubMedGoogle Scholar
  52. 52.
    K. Sahin, K. N. Şahin, and N. Erkal, Tavşanlarda Basal Rasyona Krom İlavesinin Glikoz, İnsulin, Kortizol ve Alkali Fosfataz Düzeyleri ile Besi Performansi Üzerine Etkisi, Turk. J. Vet. Anim. Sci. 21, 147–153 (1997).Google Scholar
  53. 53.
    X. Chang and D. N. Mowat. Supplemental chromium for stressed and growing feeder calves, J. Anim. Sci. 70, 559–567 (1992).PubMedGoogle Scholar
  54. 54.
    S. Moonsie-Shager and D. N. Mowat. Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves, J. Anim. Sci. 71, 232–240 (1993).Google Scholar
  55. 55.
    M. Colgan, Chromium boosts insulin efficiency, in Optimum Sports Nutrition, Advanced Research, New York, pp. 313–320 (1993).Google Scholar
  56. 56.
    M. A. Cupo and W. E. Donaldson, Chromium and vanadium effects on glucose metabolism and lipid synthesis in the chick, Poult. Sci. 66, 120–126 (1987).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Kazim Sahin
    • 1
  • Nurhan Sahin
    • 2
  • Muhittin Onderci
    • 2
  • Ferit Gursu
    • 3
  • Gurkan Cikim
    • 3
  1. 1.Department of Animal Nutrition, Veterinary FacultyUniversity of FiratElazigTurkey
  2. 2.Veterinary Control and Research InstituteMinistry of AgricultureElazigTurkey
  3. 3.Department of Biochemistry, School of MedicineUniversity of FiratElazigTurkey

Personalised recommendations