Biological Trace Element Research

, Volume 88, Issue 2, pp 97–112 | Cite as

Vanadium and tungsten derivatives as antidiabetic agents

A review of their toxic effects
  • José L. Domingo


Tungstate is an oxyanion that has biological similarities to vanadate. In recent years, a number of studies have shown the antidiabetic effects of oral tungstate in animal models of diabetes. However, because of the tissue accumulation and potential toxicity derived from chronic administration of vanadium and tungsten compounds, the pharmacological use of vanadate or tungstate in the treatment of diabetes is not necessarily exempt from concern. In the context of a potential use in the treatment of human diabetes mellitus, the most relevant toxic effects of vanadium derivatives are reviewed and compared with those reported for tungsten. Hematological and biochemical alterations, loss of body weight, nephrotoxicity, immunotoxicity, reproductive and developmental toxicity, and behavioral toxicity have been reported to occur following exposure to vanadium compounds. Moreover, vanadium also has a mitogenic activity affecting the distribution of chromosomes during mitosis and inducing aneuploidyrelated end points. In contrast to vanadate, studies about the toxic effects of tungstate are very scant. Early investigations in cats, rabbits, dogs, mice, and rats showed that tungstate was less toxic than vanadate when given intravenously. Although in vitro investigations showed a direct effect of tungstate on the embryo and fetus of mice at concentrations similar to those causing effects in vivo, information on the potential cellular toxicity of tungstate is particularly scarce. Taking into account the recent interest of tungstate as a new potential oral antidiabetic agent, an exhaustive evaluation of its toxicity in mammals is clearly necessary.

Index Entries

Vanadium tungsten diabetes mellitus toxicity tissue accumulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Barceloux, Vanadium, Clin. Toxicol. 37, 265–278 (1999).CrossRefGoogle Scholar
  2. 2.
    D. C. Crans, Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds, J. Inorg. Biochem. 80, 123–131 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    E. Tsiani and I. G. Fantus, Vanadium compounds. Biological actions and potential as pharmacological agents, Trends Endocrinol. Metabol. 8, 51–58 (1997).CrossRefGoogle Scholar
  4. 4.
    P. Poucheret, S. Verma, M. D. Grynpas, and J. H. McNeill, Vanadium and diabetes. Mol. Cell. Biochem. 188, 73–80 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    M. C. Cam, R. W. Brownsey, and J. H. McNeill, Mechanisms of vanadium action: insulin-mimetic or insulin enhancing agent? Can. J. Physiol. Pharmacol. 78, 829–847 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    I. Goldwaser, D. Gefel, E. Gershonov, M. Fridkin, and Y. Shechter, Insulin-like effects of vanadium: basic and clinic implications, J. Inorg. Biochem. 80, 21–25 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Ramanadham, C. Heyliger, M. J. Gresser, A. S. Tracey, and J. H. McNeill, The distribution and half-life for retention of vanadium in the organs of normal and diabetic rats orally fed vanadium(IV) and vanadium(V), Biol. Trace Element Res. 30, 119–124 (1991).Google Scholar
  8. 8.
    A. K. Srivastava, Anti-diabetic and toxic effects of vanadium compounds, Mol. Cell. Biochem. 206, 177–182 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    G. R. Willsky, A. B. Goldfine, P. J. Kostyniak, et al., Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovanadium(IV), J. Inorg. Biochem. 85, 33–42 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    J. H. McNeill, H. L. M. Delgatty, and M. L. Battell, Insulinlike effects of sodium selenate in streptozotocin-induced diabetic rats, Diabetes 40, 1675–1678 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Bosch, J. E. Rodriguez-Gil, M. Hatzoglou, A. M. Gomez-Foix, and R. W. Hanson, Lithium inhibits hepatic gluconeogenesis and phosphoenolpyruvate carboxykinase gene expression, J. Biol. Chem. 267, 2888–2893 (1992).PubMedGoogle Scholar
  12. 12.
    R. A. Anderson, Chromium in the prevention and control of diabetes. Diabetes Metab. 26, 22–27 (2000).PubMedGoogle Scholar
  13. 13.
    F. Saker, J. Ybarra, P. Leahy, R. W. Hanson, S. C. Kalhan, and F. Ismail-Beigi, Glycemialowering effect of cobalt chloride in the diabetic rat: role of decreased gluconeogenesis. Am. J. Physiol. 274, E984-E991 (1998).PubMedGoogle Scholar
  14. 14.
    C. Fillat, J. E. Rodriguez-Gil, and J. J. Guinovart, Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes, Biochem. J. 282, 659–663 (1992).PubMedGoogle Scholar
  15. 15.
    Y. Goto, K. Kida, M. Ikeuchi, Y. Kaino, and H. Matsuda, Synergism in insulin-like effects of molybdate plus H2O2 or tungstate plus H2O2 on glucose transport by isolated rat adipocytes, Biochem. Pharmacol. 44, 174–177 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Li, G. Elberg, D. Gefel, and Y. Shechter, Permolybdate and pertungstate. Potent stimulators of insulin effects in rat adipocytes: mechanism of action. Biochemistry 34, 6218–6225 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Barberà, R. R. Gomis, N. Prats, et al., Tungstate is an effective antidiabetic agent in streptozotocin-induced diabetic rats: a long-term study, Diabetologia 44, 507–513 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    M. C. Muñoz, A. Barberà, J. Dominguez, J. Fernandez-Alvarez, R. Gomis, and J. J. Guinovart, Effects of tungstate, a new potential oral antidiabetic agent, in Zucker diabetic fatty rats, Diabetes 50, 131–138 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    K. Nomiya, H. Torii, T. Hasegawa, et al., Insulin mimetic effect of a tungstate cluster. Effect of oral administration of homo-polyoxotungstates and vanadium-substituted polyoxotungstates on blood glucose levels of STZ mice, J. Inorg. Biochem. 86, 657–667 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Rossetti, A. Giaccari, E. Klein-Robbenhaar, and L. R. Vogel, Insulinomimetic properties of trace elements and characterization of their in vivo mode of action. Diabetes 39, 1243–1250 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    C. E. Heyliger, A. G. Tahiliani, and J. H. McNeill, Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats, Science 227, 1474–1477 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Meyerovitch, Z. Farfel, J. Sack, and Y. Shechter, Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats, J. Biol. Chem. 262, 6658–6662 (1987).PubMedGoogle Scholar
  23. 23.
    O. Blondel, D. Bailbe, and B. Portha, In vivo insulin resistance in streptozotocin-diabetic rats—evidence for reversal following oral vanadate treatment, Diabetologia 32, 185–190 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    S. M. Brichard, W. Okitolonda, and J. C. Henquin, Long term improvement of glucose homeostasis by vanadate treatment in diabetic rats, Endocrinology 123, 2048–2053 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    Y. L. Wang and B. Yu, Effect of peroxovanadate compound on phenylalanine hydroxylase gene expresion, Biol. Trace Element Res. 74, 237–244 (2000).CrossRefGoogle Scholar
  26. 26.
    W. Ding, T. Hasegawa, H. Hosaka, D. Peng, K. Takahashi, and Y. Seko, Effect of longterm treatment with vanadate in drinking water on KK mice with genetic non-insulin-dependent diabetes mellitus, Biol. Trace Element Res. 80, 159–174 (2001).CrossRefGoogle Scholar
  27. 27.
    J. L. Domingo, M. Gomez, D. J. Sanchez, J. M. Llobet, and C. L. Keen, Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation, Mol. Cell. Biochem. 153, 233–240 (1995).PubMedCrossRefGoogle Scholar
  28. 28.
    J. L. Domingo, Vanadium: a review of the reproductive and developmental toxicity, Reprod. Toxicol. 10, 175–182 (1996).PubMedCrossRefGoogle Scholar
  29. 29.
    J. L. Domingo, Vanadium and diabetes. What about vanadium toxicity? Mol. Cell. Biochem. 203, 185–187 (2000).PubMedCrossRefGoogle Scholar
  30. 30.
    J. M. Llobet and J. L. Domingo, Acute toxicity of vanadium compounds in rats and mice, Toxicol. Lett. 23, 227–231 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Kazantzis, Tungsten, in Handbook on the Toxicology of Metals, L. Friberg, G. F. Nordberg, and V. B. Vouk, eds., Elsevier, Amsterdam, pp. 637–646 (1979).Google Scholar
  32. 32.
    J. L. Domingo, M. Gomez, J. M. Llobet, J. Corbella, and C. L. Keen, Oral vanadium administration to streptozotocin-diabetic rats has marked negative side-effects which are independent on the form of vanadium used, Toxicology 66, 279–287 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    J. L. Domingo, M. Gomez, J. M. Llobet, J. Corbella, and C. L. Keen, Improvement of glucose homeostasis by oral vanadyl or vanadate treatment in diabetic rats is accompanied by negative side effects, Pharmacol. Toxicol. 68, 249–253 (1991).PubMedGoogle Scholar
  34. 34.
    S. Dai and J. H. McNeill, One-year treatment of non-diabetic and streptozotocin-diabetic rats with vanadyl sulfate did notalter blood pressure or hematological indices, Pharmacol. Toxicol. 74, 110–115 (1994).PubMedGoogle Scholar
  35. 35.
    G. R. Hogan, Vanadium-induced leukocytosis, Bull. Environ. Contam. Toxicol. 64, 1–6 (2000).CrossRefGoogle Scholar
  36. 36.
    E. Sabbioni, G. Pozzi, A. Pintar, L. Casella, and S. Garattini, Cellular retention, cytotoxicity and morphological transformation by vanadium (IV) and vanadium(V) in BALB/3T3 cell lines, Carcinogenesis 12, 47–52 (1991).PubMedCrossRefGoogle Scholar
  37. 37.
    E. Sabbioni, G. Pozzi, S. Devos, A. Pintar, L. Casella, and M. Fischbach, The intensity of vanadium(V)-induced cytotoxicity and morphological transformation in BALB/3T3 cells is dependent on glutathione-mediated bioreduction to vanadium(IV), Carcinogenesis 14, 2565–2568 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    R. Ciranni, M. Antonetti, and L. Migliore, Vanadium salts induce cytogenetic effects in in vivo treated mice, Mutat. Res. 343, 53–60 (1995).PubMedCrossRefGoogle Scholar
  39. 39.
    A. M. Cortizo, V. Salice, C. M. Vescina, and S. B. Etcheverry, Proliferative and morphological changes induced by vanadium compounds on Swiss 3T3 fibroblasts, Biometals 10, 127–133 (1997).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Leonard and G. B. Gerber, Mutagenicity, carcinogenicity and teratogenicity of vanadium compounds, Mutat. Res. 317, 81–88 (1994).PubMedGoogle Scholar
  41. 41.
    B. Z. Zhong, Z. W. Gu, W. E. Wallace, W. Z. Zhong, and T. Ong, Genotoxicity of vanadium pentoxide in Chinese hamster V79 cells, Mutat. Res. 321, 35–42 (1994).PubMedCrossRefGoogle Scholar
  42. 42.
    M. Altamirano-Lozano, M. Valverde, L. Alvarez-Barrera, B. Molina, and E. Rojas, Genotoxic studies of vanadium pentoxide (V2O5) in male mice. II. Effects in several mouse tissues, Teratogen. Carcinogen. Mutagen. 19, 243–255 (1999).CrossRefGoogle Scholar
  43. 43.
    M. Altamirano-Lozano, L. Alvarez-Barrera, and E. Roldan-Reyes, Cytogenetic and teratogenic effects of vanadium pentoxide in mice, Med. Sci. Res. 21, 711–713 (1993).Google Scholar
  44. 44.
    K. H. Thompson, Vanadium and diabetes, Biofactors 10, 43–51 (1999).PubMedGoogle Scholar
  45. 45.
    K. H. Thompson, M. Battell, and J. H. McNeill, Toxicology of vanadium in mammals, in Vanadium in the Environment, J. O. Nriagu, ed., Wiley, New York, pp. 21–37 (1998).Google Scholar
  46. 46.
    H. J. Thompson, N. D. Chasteen, and L. D. Meeker, Dietary vanadyl(IV) sulfate inhibits chemically-indcued mammary carcinogenesis, Carcinogenesis 5, 849–851 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    D. J. Sanchez, A. Ortega, J. L. Domingo, and J. Corbella, Developmental toxicity evaluation of orthovanadate in the mouse, Biol. Trace Element Res. 30, 219–226 (1991).CrossRefGoogle Scholar
  48. 48.
    J. L. Paternain, J. L. Domingo, M. Gomez, A. Ortega, and J. Corbella, Developmental toxicity of vanadium in mice after oral administration, J. Appl. Toxicol. 10, 181–186 (1990).PubMedCrossRefGoogle Scholar
  49. 49.
    J. L. Paternain, J. L. Domingo, J. M. Llobet, and J. Corbella, Embryotoxic effects of sodium metavanadate administered to rats during organogenesis, Rev. Esp. Fisiol. 43, 223–228 (1987).PubMedGoogle Scholar
  50. 50.
    J. L. Domingo, J. L. Paternain, J. M. Llobet, and J. Corbella, Effects of vanadate on reproduction, gestation, parturition and lactation in rats upon oral administration. Life Sci. 39, 819–824 (1986).PubMedCrossRefGoogle Scholar
  51. 51.
    S. Ganguli, D. J. Reuland, L. A. Franklin, and M. Tucker, Effect of vanadate on reproductive efficiency in normal and streptozotocin-treated diabetic rats, Metabolism 43, 1384–1388 (1994).PubMedCrossRefGoogle Scholar
  52. 52.
    S. Ganguli, D. J. Reuland, L. A. Franklin, D. D. Deakins, W. J. Johnson, and A. Pasha, Effects of maternal vanadate treatment on fetal development, Life Sci. 55, 1267–1276 (1994).PubMedCrossRefGoogle Scholar
  53. 53.
    W. M. Bracken and R. P. Sharma, Cytotoxicity-related alterations of selected cellular functions after in vitro vanadate exposure, Biochem. Pharmacol. 34, 2465–2470 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    R. B. Nechay, L. B. Nanninga, and P. S. E. Nechay, Vanadyl(IV) and vanadate(V) binding to selected endogenous phosphate carboxyl and amino ligands: calculations of cellular vanadium species distribution, Arch. Biochem. Biophys. 251, 128–138 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Younes and O. Strubelt, Vanadate-induced toxicity towards isolated perfused rat livers: the role of lipid peroxidation, Toxicology 66, 63–74 (1991).PubMedCrossRefGoogle Scholar
  56. 56.
    J. Z. Byczkowski and A. P. Kulkarni, Vanadium redox cycling, lipid peroxidation and co-oxygenation of benzo[a]pyrene-7,8-dyhydrodiol, Biochim. Biophys. Acta 1125, 134–141 (1992).PubMedGoogle Scholar
  57. 57.
    M. H. Oster, J. M. Llobet, J. L. Domingo, J. B. German, and C. L. Keen, Vanadium treatment of diabetic Sprague-Dawley rats results in tissue vanadium accumulation and pro-oxidant effects, Toxicology 83, 115–130 (1993).PubMedCrossRefGoogle Scholar
  58. 58.
    A. M. Cortizo, L. Bruzzone, S. Molinuevo, and S. B. Etcheverry, A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma in cells, Toxicology 147, 89–99 (2000).PubMedCrossRefGoogle Scholar
  59. 59.
    A. M. Cortizo, M. Caporossi, G. Lettieri, and S. B. Etcheverry, Vanadate-induced nitric oxide production: role in osteoblast growth and differentiation, Eur. J. Pharmacol. 400, 279–285 (2000).PubMedCrossRefGoogle Scholar
  60. 60.
    X. Shi, H. Jiang, Y. Mao, J. Ye, and U. Saffiotti, Vanadium(IV)-mediated free radical generation and related 2′-deoxyguanosine hydroxylation and DNA damage, Toxicology 106, 27–38 (1996).PubMedCrossRefGoogle Scholar
  61. 61.
    W. M. Bracken, R. P. Sharma, and Y. Y. Elsner, Vanadium accumulation and subcellular distribution in relation to vanadate induced cytotoxicity in vitro, Cell. Biol. Toxicol. 1, 259–268 (1985).PubMedCrossRefGoogle Scholar
  62. 62.
    J. Owusu-Yaw, M. D. Cohen, S. Y. Fernando, and C. I. Wei, An assessment of the genotoxicity of vanadium, Toxicol. Lett. 50, 327–336 (1990).PubMedCrossRefGoogle Scholar
  63. 63.
    A. Galli, R. Vellosi, R. Fiorio, et al., Genotoxicity of vanadium compounds in yeast and cultured mammalian cells, Teratogen. Carcinogen. Mutagen. 11, 175–183 (1991).CrossRefGoogle Scholar
  64. 64.
    G. Daum, B. Levkau, N. L. Chamberlain, Y. Wang, and A. W. Clowes, The mitogen-activated protein kinase pathway contributes to vanadate toxicity in vascular smooth muscle cells, Mol. Cell. Biochem. 183, 97–103 (1998).PubMedCrossRefGoogle Scholar
  65. 65.
    N. Cohen, M. Halberstam, P. Shlimovich, C. J. Chang, H. Shamoon, and L. Rosetti, Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus, J. Clin. Invest. 95, 2501–2509 (1995).PubMedCrossRefGoogle Scholar
  66. 66.
    A. B. Goldfine, D. C. Simonson, F. Folli, M. E. Patti, and C. R. Kahn, Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus: in vivo and in vitro studies, J. Clin. Endocrinol. Metabol. 80, 3311–3320 (1995).CrossRefGoogle Scholar
  67. 67.
    G. Boden, X. Chen, J. Ruiz, G. D. V. van Rossum, and S. Turco, Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus, Metabolism 45, 1130–1135 (1996).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Halberstam, N. Cohen, P. Shlimovich, L. Rosetti, and H. Shamoon, Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects, Diabetes 45, 659–666 (1996).PubMedCrossRefGoogle Scholar
  69. 69.
    A. B. Goldfine, M. E. Patti, L. Zuberi, et al., Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies, Metabolism 49, 400–410 (2000).PubMedCrossRefGoogle Scholar
  70. 70.
    A. Barberà, J. E. Rodriguez-Gil, and J. J. Guinovart, Insulin-like actions of tungstate in diabetic rats, J. Biol. Chem. 269, 20,047–20,053 (1994).Google Scholar
  71. 71.
    A. Barberà, J. Fernandez-Alvarez, A. Truc, R. Gomis, and J. J. Guinovart, Effects of tungstate in neonatally streptozotocin-induced diabetic rats: mechanism leading to normalization of glycaemia, Diabetologia 40, 143–149 (1997).PubMedCrossRefGoogle Scholar
  72. 72.
    S. Le Lamer, P. Poucheret, G. Cros, R. K. de Richter, P. A. Bonnet, and F. Bressolle, Pharmacokinetics of sodium tungstate in rat and dog: a population approach, J. Pharmacol. Exp. Ther. 294, 714–721 (2000).PubMedGoogle Scholar
  73. 73.
    M. T. Karantassis, Toxicity of tungsten and molybdenum compounds, Ann. Med. Legal 5, 44–50 (1924).Google Scholar
  74. 74.
    F. W. Kinard, and J. van de Erve, The toxicity of orally-ingested tungsten compounds in the rat, J. Pharmacol. Exp. Ther. 72, 196–201 (1941).Google Scholar
  75. 75.
    P. H. Chanh, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. I. Experiments in mice and rats, Arch. Int. Pharmacodyn. 154, 243–249 (1965).Google Scholar
  76. 76.
    P. H. Chanh, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. II. Experiments in rabbits, Arch. Int. Pharmacodyn. 157, 109–114 (1965).Google Scholar
  77. 77.
    P. H. Chanh, M. C. Azum-Gelade, and S. Chanvattey, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. III. Experiments in cats, Agressologie 8, 51–60 (1967).Google Scholar
  78. 78.
    F. Caujolle and P. H. Chanh, The comparative toxicity of sodium chromate, molybdate, tungstate and metavandate. IV. Experiments in dogs, Agressologie 8, 265–273 (1967).PubMedGoogle Scholar
  79. 79.
    P. H. Chanh and S. Chanvattey, The comparative toxicity of sodium chromate, molybdate, tungstate and metavanadate. V. Experiments in pigeons, chicks and rats, Agressologie 8, 433–439 (1967).Google Scholar
  80. 80.
    H. A. Schroeder and M. Mitchener, Life-term studies in rats: effects of aluminum, barium, beryllium, and tungsten, J. Nutr. 105, 421–427 (1975).PubMedGoogle Scholar
  81. 81.
    V. G. Nadeenko, V. G. Lenchenko, S. B. Genkina, and T. A. Arkhipenko, The influence of tungsten, molybdenum, copper, and arsenic on the intrauterine development of the fetus, Farmakol. Toksikol. 41, 620–623 (1978).PubMedGoogle Scholar
  82. 82.
    M. Wide, Effect of short-term exposure to five industrial metals on the embryonic and fetal development of the mouse, Environ. Res. 33, 47–53 (1984).PubMedCrossRefGoogle Scholar
  83. 83.
    M. Wide, B. R. G. Danielsson, and L. Dencker, Distribution of tungstate in pregnant mice and effects on embryonic cells in vitro, Environ. Res. 40, 487–498 (1986).PubMedCrossRefGoogle Scholar
  84. 84.
    J. Fernandez-Alvarez, J. Zapatero, and C. Piñol, Acute oral and intravenous toxicity of sodium tungstate: a potential agent to treat diabetes mellitus, Abstracts of the Symposium on The Insulinomimetic Effects of Metal Ions: Potential Therapy for Diabetes Mellitus, Sitges, Spain, p. 24 (2000).Google Scholar
  85. 85.
    J. Fernandez-Alvarez, J. Zapatero, and C. Piñol, Subacute and subchronic sodium tungstate toxicity studies. Abstracts of the Symposium on The Insulinomimetic Effects of Metal Ions: Potential Therapy for Diabetes Mellitus, Sitges, Spain, p. 25 (2000).Google Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • José L. Domingo
    • 1
  1. 1.Laboratory of Toxicology and Environmental Health, School of Medicine“Rovira i Virgili” UniversityReusSpain

Personalised recommendations