Biological Trace Element Research

, Volume 83, Issue 3, pp 207–221 | Cite as

EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc

  • Robert S. Waters
  • Noella A. Bryden
  • Kristine Y. Patterson
  • Claude Veillon
  • Richard A. Anderson
Article

Abstract

The efficacy of a chelating agent in binding a given metal in a biological system depends on the binding constants of the chelator for the particular metals in the system, the concentration of the metals, and the presence and concentrations of other ligands competing for the metals in question. In this study, we make a comparison of the in vitro binding constants for the chelator, ethylenediaminetetraacetic acid, with the quantitative urinary excretion of the metals measured before and after EDTA infusion in 16 patients. There were significant increases in lead, zinc, cadmium, and calcium, and these increases roughly corresponded to the expected relative increases predicted by the EDTA-metal-binding constants as measured in vitro. There were no significant increases in urinary cobalt, chromium, or copper as a result of EDTA infusion. The actual increase in cobalt could be entirely attributed to the cobalt content of the cyanocobalamin that was added to the infusion. Although copper did increase in the post-EDTA specimens, the increase was not statistically significant. In the case of magnesium, there was a net retention of approximately 85% following chelation. These data demonstrate that EDTA chelation therapy results in significantly increased urinary losses of lead, zinc, cadmium, and calcium following EDTA chelation therapy. There were no significant changes in cobalt, chromium, or copper and a retention of magnesium. These effects are likely to have significant effects on nutrient concentrations and interactions and partially explain the clinical improvements seen in patients undergoing EDTA chelation therapy.

Index Entries

Chelation therapy cadmium chromium cobalt EDTA iron lead magnesium zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Cranton, X. L. Zheng, and I. M. Smith, Urinary trace and toxic elements and minerals in untimed urine specimens relative to urine creatinine, J. Adv. Med. 1, 331–397 (1989).Google Scholar
  2. 2.
    M. Hambidge, Human zinc deficiency, J. Nutr. 130(5S Suppl.), 1344S-1349S (2000).PubMedGoogle Scholar
  3. 3.
    D. A. Skoog and D. M. West, Volumetric methods based on complex-formation reactions, in Fundamentals of Analytical Chemistry, Holt, Rhinehart and Winston, New York, pp. 338–360 (1969).Google Scholar
  4. 4.
    B. W. Halstead, The Scientific Basis of EDTA Chelation Therapy, TRC, Lanham, SC (1997).Google Scholar
  5. 5.
    T. C. Rorzema The protocol for the safe and effective administration of EDTA and other chelating agents for vascular disease, degenerative disease and metal toxicity, J. Adv. Med. 10, 11–17 (1997).Google Scholar
  6. 6.
    H. Foreman and T. Trujillo, Metabolism of carbon 14 labeled ethylenediaminetetraacetic acid in human beings, J. Lab. Clin. Med. 43, 566 (1954).PubMedGoogle Scholar
  7. 7.
    R. A. Anderson, M. M. Polansky, N. A. Bryden, E. E. Roginski, K. Y. Patterson, and D. C. Reamer, Effect of exercise (running) on serum glucose, insulin, glucagon and chromium excretion, Diabetes 31, 212–216 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    D. W. Cockcraft and M. H. Gault, Prediction of creatinine clearance from serum creatinine, Nephron 16, 31–41 (1976).CrossRefGoogle Scholar
  9. 9.
    J. P. Prackelton, Monitoring renal function during EDTA chelation therapy, J. Holistic Med. 2, 327–330 (1989).Google Scholar
  10. 10.
    L. M. Klevay, Ischemic heart disease: toward a unified theory, in Role of Copper in Lipid Metabolism, K. Y. Lei, ed., CRC, Boca Raton, FL, pp. 233–267 (1990).Google Scholar
  11. 11.
    H. D. Riordan, E. Cheraskin, and M. Dirks, Mineral excretion associated with EDTA chelation therapy, J. Adv. Med. 3, 111–123 (1990).Google Scholar
  12. 12.
    J. P. Frackelton, Monitoring renal function during EDTA Chelation therapy. J. Holistic Med. 8, 33–35 (1986).Google Scholar
  13. 13.
    C. A. Burtis and E. R. Ashwood, eds., Tietz Textbook of Clinical Chemistry. Trace Elements, W. B. Saunders, Philadelphia, p. 490 (1999).Google Scholar
  14. 14.
    R. A. Anderson, N. A. Bryden, and R. S. Waters, EDTA chelation therapy does not selectively increase chromium losses, Biol. Trace Element Res. 70, 265–272 (1999).Google Scholar
  15. 15.
    R. A. Anderson, N. Cheng, N. A. Bryden, M. M. Polansky, N. Cheng, J. Chi, et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes, Diabetes 46, 1786–1791 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    R. A. Anderson, Chromium, glucose intolerance and diabetes. J. Am. Coll. Nutr. 17, 548–555 (1998).PubMedGoogle Scholar
  17. 17.
    A. Raviva, L. Stezak, N. Mirsky, N. A. Bryden, and R. A. Anderson, Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium, Diabetic Med. 16, 164–167 (1999).CrossRefGoogle Scholar
  18. 18.
    R. A. Anderson, Chromium and diabetes, Nutrition 15, 720–721 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    R. A. Anderson, A. M. Roussel, and J. Neve, Essential trace elements, chromium, copper, iron, zinc and selenium, and cardiovascular diseases, Handbook of Hypertension, Vol. 20, C. J. Bulbitt, ed., Elsevier, New York, pp. 314–335 (2000).Google Scholar
  20. 20.
    M. Rubin, Enhancement of lead excretion in humans by disodium calcium ethylenedi-aminetetraacetic acid, Science 117, 659–660 (1953).PubMedCrossRefGoogle Scholar
  21. 21.
    H. A. Schroeder and H. M. Perry, Antihypertensive effects of metal binding agents, J. Lab. Clin. Med. 46, 416–421 (1955).PubMedGoogle Scholar
  22. 22.
    H. A. Schroeder and J. Buckman, Cadmium hypertension, its reversal by a zinc chelate, Arch. Environ. Health 14, 693–697 (1967).PubMedGoogle Scholar
  23. 23.
    D. Krumhout, Blood lead and coronary heart disease among elderly men in Zutphen, the Netherlands, Environ. Health Perspect. 78, 43–46 (1988).CrossRefGoogle Scholar
  24. 24.
    E. W. McDonagh, C. J. Rudolph, and E. Cheraskin, The effects of intravenous disodium EDTA on blood cholesterol in a private practice environment, J. Int. Acad. Prev. Med. 7, 5–12 (1982).Google Scholar
  25. 25.
    K. W. Sehnert, A. F. Clague, and E. Cheraskin, The Improvement in renal function following EDTA chelation and multivitamin-trace mineral therapy: a study in creatinine clearance, Med. Hypothesis 15, 301–304 (1984).CrossRefGoogle Scholar
  26. 26.
    E. W. Olszewer and J. P. Canter, EDTA chelation therapy: a retrospective study of 2,870 patients, J. Adv. Med. 2, 197–233 (1989).Google Scholar
  27. 27.
    Food and Nutrition Board, National Research Council: Recommended Dietary Allowances, 10th ed., National Academy of Science, Washington, DC (1989).Google Scholar
  28. 28.
    C. A. Burtis and E. R. Ashwood, eds., Tietz Textbook of Clinical Chemistry. Trace Elements, W. B. Saunders, Philadelphia, p. 1038 (1999).Google Scholar
  29. 29.
    S. M. Pilch and F. R. Senti, Analysis of zinc data from the second National Health and Nutrition Examination Survey (NHANES II), J. Nutr. 115, 1393–1397 (1985).PubMedGoogle Scholar
  30. 30.
    R. R. Briefel, K. Bialostosky, J. Kennedy-Stephenson, M. A. McDowell, R. B. Ervin, and J. D. Wright, Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988–1994, J. Nutr. 130(5S Suppl.), 1367S-1373S (2000).PubMedGoogle Scholar
  31. 31.
    R. A. Jacob, J. M. Munoz, H. H. Sandstead, et al., Whole body surface loss of trace metals in normal males, Am. J. Clin. Nutr. 34, 1379–1383 (1981).PubMedGoogle Scholar
  32. 32.
    M. H. Stipanuk, Biochemical and Physiological Aspects of Human Nutrition, W.B. Saunders, Philadelphia, p. 750 (2000).Google Scholar
  33. 33.
    C. A. Burtis and E. R. Ashwood, eds., Tietz Textbook of Clinical Chemistry. Trace Elements, W. B. Saunders, Philadelphia, p. 1396 (1999).Google Scholar
  34. 34.
    A. G. Goodman and L. S. Gilman, The Pharmaceutical Basis of Therapeutics, 3rd ed., MacMillan, New York, p. 1620 (1985).Google Scholar
  35. 35.
    L. E. Meltzer, J. R. Kitchell, and F. Palmon, The long term use, side effects and toxicity of disodium EDTA, Am. J. Med. Sci., 242, 11–17 (1961).PubMedGoogle Scholar
  36. 36.
    M. D. Reuber and J. E. Bradley, Acute versenate nephrosis, JAMA 174, 263–269 (1960).PubMedGoogle Scholar
  37. 37.
    N. E. Clarke, N. C. Clarke, and R. E. Moshen, Treatment of angina pectoris with disodium EDTA, Am. J. Med. Sci. 232, 654–666 (1956).PubMedCrossRefGoogle Scholar
  38. 38.
    C. P. Lamar, Chelation endarterectomy for occlusive atherosclerosis, J. Am. Geriatr. Soc. 14, 272–294 (1966).PubMedGoogle Scholar
  39. 39.
    E. W. McDonagh, C. J. Ruddolph, and E. Chesarkin, The “clinical change” in patients treated with EDTA chelation plus multivitamin trace mineral supplementation, J. Orthomol. Psychiatry 14, 61–65 (1985).Google Scholar
  40. 40.
    H. R. Casdorph, EDTA chelation therapy: efficacy in heart disease, J. Adv. Med. 2, 121–129 (1989).Google Scholar
  41. 41.
    H. R. Casdorph and C. H. Farr, EDTA chelation therapy: treatment of peripheral arterial occlusion, an alternative to amputation, J. Adv. Med. 2, 167–182 (1989).Google Scholar
  42. 42.
    C. Hancke and K. Flytlie, Benefits of EDTA chelation therapy in atherosclerosis: a retrospective study of 470 patients. J. Adv. Med. 6, 161–171 (1993).Google Scholar
  43. 43.
    L. T. Chappell and J. P. Stahl, The correlation between EDTA chelation therapy and improvement in cardiovascular function: a meta-analysis. J. Adv. Med. 6, 139–160 (1993).Google Scholar
  44. 44.
    H. J. Holliday, Carotid restenosis: a case for EDTA chelation, J. Adv. Med. 9, 95–99 (1996).Google Scholar
  45. 45.
    C. J. Rudolph and E. W. McDonagh, Renal artery stenosis reversal in a hypertensive individual, using a combination of EDTA chelation and multiple vitamin and trace mineral therapy, J. Adv. Med. 12, 193–200 (1999).Google Scholar
  46. 46.
    N. E. Clarke, C. N. Clarke, and R. E. Mosher, The “in vivo” dissolution of metastatic calcium: an approach to atherosclerosis, Am. J. Med. Sci. 229, 142–146 (1955).PubMedCrossRefGoogle Scholar
  47. 47.
    H. A. Schroeder, A practical method for the reduction of plasma cholesterol in man, J. Chronic Dis. 4, 461–465 (1956).PubMedCrossRefGoogle Scholar
  48. 48.
    A. Suvorov and R. A. Markosyan, Some mechanisms of EDTA on platelet aggregation, All Union Cardiol. Res. Cend. Moscow, Russia. Byall Eks Biol. Med. 5, 587 (1981).Google Scholar
  49. 49.
    D. P. Deucher, EDTA chelation therapy: an antioxidant strategy, J. Adv. Med. 1, 182–186 (1988).Google Scholar
  50. 50.
    B. M. Altura and B. T. Altura, Interactions of Mg and K on blood vessels: aspects in view of hypertension, Magnesium 3, 175–194 (1984).PubMedGoogle Scholar
  51. 51.
    L. M. Resnick, R. K. Gupta, and J. H. Laragh, Intracellular free magnesium in erythrocytes of essential hypertension: relation to blood pressure and serum divalent cations, Proc. Natl. Acad. Sci. USA 81, 6511–6515 (1984).PubMedCrossRefGoogle Scholar
  52. 52.
    K. Kisters, M. Tepel, C. Spieker, K. H. Dietl, M. Barenbrock, K. H. Rahn, et al., Decreased cellular Mg2+ concentrations in a subgroup of hypertensives—cell models for the pathogenesis of primary hypertension, J. Hum. Hypertens. 11, 367–372 (1997).PubMedCrossRefGoogle Scholar
  53. 53.
    I. DeLeeuw, W. Engelen, J. Vertommen, and L. Nonneman, Effect of intensive i.v. and oral magnesium supplementation on circulating ion levels, lipid parameters and metabolic control in Mg-depleted insulin-dependent diabetic patients (IDDM), Magnesium Res. 10, 135–141 (1997).Google Scholar
  54. 54.
    L. Hansson, A. Zanchetti, S. G. Carruthers, B. Dahlof, D. Elmfeldt, S. Julius, et al., Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group, Lancet 351, 1755–1762 (1998).PubMedCrossRefGoogle Scholar
  55. 55.
    J. R. Sowers and B. Draznin, Insulin, cation metabolism and insulin resistance, J. Basic Clin. Physiol. Pharmacol. 9, 223–233 (1998).PubMedGoogle Scholar
  56. 56.
    H. W. DeValk, Magnesium in diabetes mellitus, Netherland J. Med. 57, 139–146 (1999).CrossRefGoogle Scholar
  57. 57.
    M. Worwag, H. G. Classen, and E. Schumacher, Prevalence of magnesium and zinc deficiencies in nursing home residents in Germany, Magnesium Res. 12, 181–189 (1999).Google Scholar
  58. 58.
    K. Kisters, Magnesium deficiency and increased fractional magnesium excretion in insulin-dependent diabetes mellitus-magnesium loading fraction and blood pressure, Trace Element Electrolytes 17, 67–70 (2000).Google Scholar
  59. 59.
    K. L. Woods, S. Fletcher, C. Roffe, et al., Intravenous magnesium sulphate in suspected acute myocardial infarction of the second Leicester Intravenous Magnesium Intervention Trial. (LIMIT-2), Lancet 339, 1553–1558 (1992).PubMedCrossRefGoogle Scholar
  60. 60.
    S. M. Horner, Efficacy of intravenous magnesium in acute myocardial infarction in reducing arrhythmias and mortality. Meta-analysis of magnesium in acute myocardial infarction, Circulation 86, 774–779 (1992).PubMedGoogle Scholar
  61. 61.
    M. A. Brodsky, M. V. Orlov, E. V. Capparelli, B. J. Allen, L. T. Iseri, M. Ginkel, et al., Magnesium therapy in new-onset atrial fibrillation, Am. J. Cardiol. 15, 1227–1229 (1994).CrossRefGoogle Scholar
  62. 62.
    M. Shechter, H. Hod, E. Kaplinsky, and B. Rabinowitz, The rationale of magnesium as alternative therapy for patients with acute myocardial infarction without thrombolytic therapy, Am. Heart J. 132, 483–486 (1996).PubMedCrossRefGoogle Scholar
  63. 63.
    G. M. Reaven, Role of insulin resistance in human disease, Diabetes 37, 1595–1607 (1988).PubMedCrossRefGoogle Scholar
  64. 64.
    M. Chevion, The use of both “push and pull” mechanisms against free radical induced biological damage, Plzen. Lek. Shorn. 68(Suppl.), 77–81 (1993).Google Scholar
  65. 65.
    T. M. Bray and W. J. Bettger, The physiological role of zinc an antioxidant, Free Radical Biol. Med. 8, 281–291 (1990).CrossRefGoogle Scholar
  66. 66.
    C. F. Peng, J. J. Kane, M. L. Murphy, and K. D. Straub, Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Ca2+-chelating agents. J. Mol. Cell Cardiol. 9, 897–908 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Robert S. Waters
    • 2
  • Noella A. Bryden
  • Kristine Y. Patterson
    • 1
  • Claude Veillon
    • 1
  • Richard A. Anderson
    • 1
  1. 1.Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research CenterU.S. Department of Agriculture, Agricultural Research ServiceBeltsville
  2. 2.Waters Preventive Medical Center Ltd.Wisconsin Dells

Personalised recommendations