Advertisement

Biological Trace Element Research

, Volume 81, Issue 3, pp 189–213 | Cite as

The effects of dietary selenium on the immune system in healthy men

  • Wayne Chris Hawkes
  • Darshan S. Kelley
  • Peter C. Taylor
Accelerated Article

Abstract

Eleven men were fed foods naturally high or low in selenium for 120 d. Selenium intake was stabilized at 47 µg/d for 21 d, then changed to either 13 or 297 µg/d for 99 d, leading to significantly different blood selenium and glutathione peroxidase concentrations. Serum immunoglobulins, complement components, and primary antibody responses to influenza vaccine were unchanged. Antibody titers against diphtheria vaccine were 2.5-fold greater after reinoculation in the high selenium group. White blood cell counts decreased in the high-selenium group and increased in the low-selenium group, resulting primarily from changes in granulocytes. Apparent increases in cytotoxic T-lymphocytes and activated T-cells in the high-selenium group only approached statistical significance. Lymphocyte counts increased on d 45 in the high-selenium group. In vitro proliferation of peripheral lymphocytes in autologous serum in response to pokeweed mitogen was stimulated in the high-selenium group by d 45 and remained elevated throughout the study, whereas proliferation in the low selenium group did not increase until d 100. This study indicates that the immune-enhancing properties of selenium in humans are the result, at least in part, of improved activation and proliferation of B-lymphocytes and perhaps enhanced T-cell function.

Index Entries

Selenium secondary immune response leukocytes lymphocytes white blood cells granulocytes blastogenesis antibody titers mitogens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. McKenzie, T. S. Rafferty, and G. J. Beckett, Selenium: an essential element for immune function, Immunol. Today 19, 342–345 (1998).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Peretz, J. Neve, J. Desmedt, J. Duchateau, M. Dramaix, and J. P. Famaey, Lymphocyte response is enhanced by supplementation of elderly subjects with selenium-enriched yeast, Am. J. Clin. Nutr. 53, 1323–1328 (1991).PubMedGoogle Scholar
  3. 3.
    M. Roy, L. Kiremidjianschumacher, H. I. Wishe, M. W. Cohen, and G. Stotzky, Supplementation with selenium and human immune cell functions. 1. Effect on lymphocyte proliferation and interleukin 2 receptor expression, Biol. Trace Element Res. 41, 103–114 (1994).Google Scholar
  4. 4.
    S. Y. Yu, Y. J. Zhu, and W. G. Li, Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong, Biol. Trace Element Res. 56, 117–124 (1997).Google Scholar
  5. 5.
    L. Kiremidjianschumacher, M. Roy, H. I. Wishe, M. W. Cohen, and G. Stotzky, Supplementation with selenium and human immune cell functions. 2. Effect on cytotoxic lymphocytes and natural killer cells, Biol. Trace Element Res. 41, 115–127 (1994).Google Scholar
  6. 6.
    X. Chen, G. Yang, J. Chen, X. Chen, Z. Wen, and K. Ge, Studies on the relations of selenium and Keshan disease, Biol. Trace Element Res. 2, 91–107 (1980).Google Scholar
  7. 7.
    D. Ding, S. Zhang, C. Bai, and A. L. Et, The study of the relationship between selenium and kashin-beck disease, J. Xi’an Med. Univ. 12, 14–18 (1991).Google Scholar
  8. 8.
    P. I. Mansell, S. P. Allison, and A. Shenkin, Reversal of a skeletal myopathy with selenium supplementation in a patient on home parenteral nutrition, 7th European Society Of Parenteral And Enteral Nutrition Congress, Paris, p. 85 (1986).Google Scholar
  9. 9.
    J. B. Vanderpas, B. Contempre, N. L. Duale, W. Goossens, N. Bebe, R. Thorpe, et al., Iodine and selenium deficiency associated with cretinism in northern zaire, Am. J. Clin. Nutr. 52, 1087–1093 (1990).PubMedGoogle Scholar
  10. 10.
    H. Krsnjavi, B. A. Grgurevic, D. Beker, Z. Romic, and A. Krsnjavi, Selenium and fertility in men, Trace Elements Med. 9, 107–108 (1992).Google Scholar
  11. 11.
    J. M. Braganza, C. D. Hewitt, and J. P. Day, Serum selenium in patients with chronic pancreatitis lowest values during painful exacerbations, Trace Elements Med. 5, 79–84 (1988).Google Scholar
  12. 12.
    E. Delilbasi, B. Turan, E. Yucel, R. Sasmaz, A. Isimer, and A. Sayal, Selenium and Behcet’s disease, Biol. Trace Element Res. 28, 21–26 (1991).Google Scholar
  13. 13.
    J. R. O’dell, S. Lemley-Gillespie, W. R. Palmer, A. L. Weaver, G. F. Moore, and L. W. Klas Sen, Serum selenium concentrations in rheumatoid arthritis, Ann. Rheum. Dis. 50, 376–378 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Sammalkorpi, V. Valtonen, G. Alfthan, A. Aro, and J. Huttunen, Serum selenium in acute infections, Infection 16, 222–224 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    M. P. Look, J. K. Rockstroh, G. S. Rao, K. A. Kreuzer, S. Barton, H. Lemoch, et al., Serum selenium, plasma glutathione (GSH) and erythrocyte glutathione peroxidase (GSH-Px)-levels in asymptomatic versus symptomatic human immunodeficiency virus-1 (HIV-1)-infection, Eur. J. Clin. Nutr. 51, 266–272 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    M. K. Baum, G. Shor-Posner, S. Lai, G. Zhang, H. Lai, M. A. Fletcher, et al., High risk of HIV-related mortality is associated with selenium deficiency, J. Acquired Immune Defic. Syndr. Hum. Retrovirol. 15, 370–374 (1997).Google Scholar
  17. 17.
    A. Campa, G. Shor-Posner, F. Indacochea, G. Y. Zhang, H. Lai, D. Asthana, et al., Mortality risk in selenium-deficient HIV-positive children, J. Acquired Immune Defic. Syndr. Hum. Retrovirol. 20, 508–513 (1999).Google Scholar
  18. 18.
    R. Ebert-Dumig, J. Seufert, D. Schneider, J. Kohrle, N. Schutze, and F. Jakob, Expression of selenoproteins in monocytcs and macrophages—Implications for the immune system, Med. Klin. 94, 29–34 (1999).Google Scholar
  19. 19.
    C. K. Sen, Cellular thiols and redox-regulated signal transduction, Curr. Top. Cell Regul. 36, 1–30 (2000).PubMedGoogle Scholar
  20. 20.
    E. R. Hofman, M. Boyanapalli, D. J. Lindner, W. H. Xiao, B. A. Hassel, R. Jagus, et al., Thioredoxin reductase mediates cell death effects of the combination of beta interferon and retinoic acid, Mol. Cell. Biol. 18, 6493–6504 (1998).PubMedGoogle Scholar
  21. 21.
    E. W. Taylor, C. S. Ramanathan, R. K. Jalluri, and R. G. Nadimpalli, A basis for new approaches to the chemotherapy of AIDS: novel genes in HIV-1 potentially encode selenoproteins expressed by ribosomal frameshifting and termination suppression, J. Med. Chem. 37, 2637–2654 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    E. W. Taylor, A. Bhat, R. G. Nadimpalli, W. Zhang, and J. Kececioglu, HIV-1 encodes a sequence overlapping env gp41 with highly significant similarity to selenium-dependent glutathione peroxidases, J. Acquired Immune Defic. Syndr. Hum. Retrovirol. 15, 393–394 (1997).Google Scholar
  23. 23.
    E. W. Taylor, Selenium and cellular immunity—Evidence that selenoproteins may be encoded in the+1 reading frame overlapping the human CD4, CD8, and HLA-DR genes, Biol. Trace Element Res. 49, 85–95 (1995).Google Scholar
  24. 24.
    W. C. Hawkes, E. C. Wilhelmsen, and A. L. Tappel, Abundance and tissue distribution of selenocysteine-containing proteins in the rat, J. Inorg. Biochem. 23, 77–92 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    Metropolitan Life Insurance Co., New Height and Weight Tables. 1979 Build Study, Society of Actuaries and Association of Life Insurance Medical Directors of America, Chicago, IL (1980).Google Scholar
  26. 26.
    National Research Council (NRC) Committee on Dietary Allowances. Recommended Dietary Allowances, National Academy Press, Washington, DC (1989).Google Scholar
  27. 27.
    Panel on Dietary Antioxidants and Related Compounds, Subcommittee on Upper Reference Levels of Nutrients, Subcommittee on Interpretation and Uses of DRIs, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, and Food and Nutrition Board, Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids, National Academy Press, Washington, DC (2000).Google Scholar
  28. 28.
    US Department of Agriculture, Composition of Foods, Handbook 8, Government Printing Office, Washington, DC (1991).Google Scholar
  29. 29.
    National Research Council (NRC) Committee on Dietary Allowances, Recommended Dietary Allowances, National Academy Press, Washington, DC (1980).Google Scholar
  30. 30.
    D. S. Kelley, P. C. Taylor, G. J. Nelson, and B. E. Mackey, Dietary docosahexaenoic acid and immunocompetence in young healthy men, Lipids 33, 559–566 (1998).PubMedCrossRefGoogle Scholar
  31. 31.
    W. C. Hawkes, and M. A. Kutnink, High-performance liquid chromatographic-fluorescence determination of traces of selenium in biological materials, Anal. Biochem. 241, 206–211 (1996).PubMedCrossRefGoogle Scholar
  32. 32.
    W. C. Hawkes, and K. A. Craig, Automated continuous-flow colorimetric determination of glutathione peroxidase with dichloroindophenol, Anal. Biochem. 186, 46–52 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    W. C. Hawkes, and K. A. Craig, Adaptation of the bicinchoninic acid protein assay to a continuous-flow autoanalyzer, Lab. Robot. Autom. 3, 13–17 (1990).Google Scholar
  34. 34.
    D. S. Kelley, L. B. Branch, and J. M. Iacono, Nutritional modulation of human immune status, Nutr. Res. 9, 965–975 (1989).CrossRefGoogle Scholar
  35. 35.
    D. S. Kelley, P. C. Taylor, G. J. Nelson, P. C. Schmidt, B. E. Mackey, and D. Kyle, Effects of dietary arachidonic acid on human immune response, Lipids 32, 449–456 (1997).PubMedCrossRefGoogle Scholar
  36. 36.
    J. C. Hierholzer, M. T. Suggs, and E. C. Hall, Standardized viral hemagglutination and hemagglutination tests. II. Description and statistical evaluation, Appl. Microbiol. 18, 824–833 (1969).PubMedGoogle Scholar
  37. 37.
    V. J. Johnson, M. Tsunoda, and R. P. Sharma, Increased production of proinflammatory cytokines by murine macrophages following oral exposure to sodium selenite but not to seleno-l-methionine, Arch. Environ. Contam. Toxicol. 39, 243–250 (2000).PubMedCrossRefGoogle Scholar
  38. 38.
    F. Girodon, P. Galan, A. L. Monget, M. C. Boutron-Ruault, P. Brunet-Lecomte, P. Preziosi, et al., Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: a randomized controlled trial. MIN. VIT. AOX. geriatric network, Arch. Intern. Med. 159, 748–754 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    J. K. Reffett, J. W. Spears, and T. T. Brown, Jr., Effect of dietary selenium and vitamin e on the primary and secondary immune response in lambs challenged with parainfluenza-3 virus, J. Anim. Sci. 66, 1520–1528 (1988).PubMedGoogle Scholar
  40. 40.
    P. D. Jelinek, T. Ellis, R. H. Wroth, S. S. Sutherland, H. G. Masters, and D. S. Petterson, The effect of selenium supplementation on immunity and the establishment of experimental haemonchus-contortus infection in weaner merino sheep fed a low selenium diet, Aust. Vet. J 65, 214–217 (1988).PubMedGoogle Scholar
  41. 41.
    W. S. Swecker, Jr., D. E. Eversole, C. D. Thatcher, D. J. Blodgett, G. G. Schurig, and J. B. Meldrum, Influence of supplemental selenium on humoral immune responses in weaned beef calves, Am. J. Vet. Res. 50, 1760–1763 (1989).PubMedGoogle Scholar
  42. 42.
    D. A. Knight and W. J. Tyznik, The effect of dietary selenium on humoral immunocompetence of ponies, J. Anim. Sci. 68, 1311–1317 (1990).PubMedGoogle Scholar
  43. 43.
    M. Bonomini, S. Forster, F. De Risio, J. Rychly, B. Nebe, V. Manfrini, et al., Effects of selenium supplementation on immune parameters in chronic uraemic patients on haemodialysis, Nephrol. Dial. Transplant. 10, 1654–1661 (1995).PubMedGoogle Scholar
  44. 44.
    M. Weide, D. Zhaoming, L. Baoliang, and X. Huibi, Study of immune function of cancer patients influenced by supplemental zinc or selenium zinc combination, Biol. Trace Element Res. 28, 11–20 (1991).CrossRefGoogle Scholar
  45. 45.
    L. D. Koller, J. H. Exon, P. A. Talcott, C. A. Osborne, and G. M. Henningsen, Immune responses in rats supplemented with selenium, Clin. Exp. Immunol. 63, 570–576 (1986).PubMedGoogle Scholar
  46. 46.
    D. J. Blodgett, E. T. Kornegay, G. G. Schurig, J. B. Meldrum, and E. D. Bonnette, Vitamin E selenium and immune response to selected antigens in swine, Nutr. Rep. Int. 38, 37–44 (1988).Google Scholar
  47. 47.
    A. Fairbrother and J. Fowles, Subchronic effects of sodium selenite and selenomethionine on several immune-functions in mallards, Arch. Environ. Contam. Toxicol. 19, 836–844 (1990).CrossRefGoogle Scholar
  48. 48.
    M. Zhu and A. L. Et, Influence of dietary selenium level on immune function of rats with esophageal tumors induced by methylbenzylnitrosamine nmbza, Zhonghua Zhongliu Zazhi 14, 42–44 (1992).PubMedGoogle Scholar
  49. 49.
    N. Lacetera, U. Bernabucci, B. Ronchi, and A. Nardone, The effects of injectable sodium selenite on immune function and milk production in Sardinian sheep receiving adequate dietary selenium, Vet. Res. 30, 363–370 (1999).PubMedGoogle Scholar
  50. 50.
    L. C. Clark, G. F. Combs, Jr., B. W. Turnbull, E. H. Slate, D. K. Chalker, J. Chow, et al., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial, J. Am. Med. Assoc. 276, 1957–1963 (1996).CrossRefGoogle Scholar
  51. 51.
    M. A. Beck, P. C. Kolbeck, Q. Shi, L. H. Rohr, V. C. Morris, and O. A. Levander, Increased virulence of a human enterovirus (Coxsackievirus B3) in selenium-deficient mice, J. Infect. Dis. 170, 351–357 (1994).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Wayne Chris Hawkes
    • 1
  • Darshan S. Kelley
    • 1
  • Peter C. Taylor
    • 1
  1. 1.U.S. Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research CenterUniversity of California at DavisDavis

Personalised recommendations