Biological Trace Element Research

, Volume 78, Issue 1–3, pp 271–280 | Cite as

Determination of total aluminum, chromium, copper, iron, manganese, and nickel and their fractions leached to the infusions of black tea, green tea, Hibiscus sabdariffa, and Ilex paraguariensis (mate) by ETA-AAS

  • Katarzyna Wróbel
  • Kazimierz Wróbel
  • Edith Madaí Colunga Urbina


Total aluminum, chromium, copper, iron, manganese, and nickel were determined in black tea, green tea, Hibiscus sabdariffa, and Ilex paraguariensis (mate) by electrothermal atomic absorption spectrometry after nitric/perchloric acid digestion. In each case, one ground sample of commercially available leafy material was prepared and three 0.5-g subsamples were run in parallel. The infusions were also analyzed and the percentage of each element leached into the liquor was evaluated. The obtained results indicated that hibiscus and mate contained lower levels of aluminum (272±19 µg/g and 369±22 µg/g, respectively) as referred to black tea (759±31 µg/g) or green tea (919±29 µg/g) and suggested that mate drinking could be a good dietary source of essential micronutrient manganese (total content 2223±110 µg/g, 48.1% leached to the infusion). It was also found that the infusion of hibiscus could supply greater amounts of iron (111±5 µg/g total, 40.5% leached) and copper (5.9±0.3 µg/g total, 93.4% leached) as compared to other infusions. Moreover, it was found that the percentage of element leached to the infusion was strongly related to the tannins content in the beverage (correlation coefficients >0.82 with the exception for nickel); for lower tannins level, better leaching was observed.

Index Entries

tea Hibiscus sabdariffa Ilex paraguariensis ETA-AAS tannins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Weisburger, Tea and health: a historical perspective, Cancer Lett. 114, 315–317 (1997).PubMedCrossRefGoogle Scholar
  2. 2.
    J. J. Powell, T. J. Burden, and R. P. H. Thompson, In vitro mineral availability from digested tea: a rich dietary source of manganese, Analyst 123, 1721–1724 (1998).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Darret, F. Couzy, J. M. Antoine, C. Magliola, and J. P. Mareschi, Estimation of minerals and trace elementes provided by beverages for the adult in France, Ann. Nutr. Metab. 30, 335–344 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    C. G. Victora, N. Muñoz, B. L. Horta, and E. O. Ramos, Patterns of mate drinking in a Brazilian city, Cancer Res. 50, 7112–7115 (1990).PubMedGoogle Scholar
  5. 5.
    F. Matsushima, S. Meshitsuka, and T. Nose, Contents of aluminum and manganese in tea leaves and tea infusions, Nippon Eiseigaku Zasshi 48, 864–872 (1993).PubMedGoogle Scholar
  6. 6.
    K. Lamble and S. J. Hill, Determination of trace metals in tea using both microwave digestion at atmospheric pressure and inductively coupled plasma atomic emission spectrometry, Analyst 120, 413–417 (1995).CrossRefGoogle Scholar
  7. 7.
    R. Liu, A. Zhang, D. Liu, and S. Wang, Determination of manganese in chinese tea leaves by a catalytic kinetic spectrophotometric method, Analyst 120, 1195–1197 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    H. J. Salacinski, P. G. Riby, and S. J. Haswell, Coupled flow-injection analysis flameatomic-absorption spertometry for the quantitative determination of aluminum in beverages and waters incorporating online cation-exchange, Anal. Chim. Acta 269, 1–7 (1992).CrossRefGoogle Scholar
  9. 9.
    M. Nabrzyski and R. Gajewska, Aluminium and fluoride in hospital daily diets and in teas, Z. Lebensm. Unters Forsch. 201, 307–310 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    C. K. Manickum and A. A. Verbeek, Determination of aluminum, barium, magnesium, and manganese in tea leaf by slurry nebulization ICP-AES, J. Anal. Atomic Spectrom. 9, 227–229 (1994).CrossRefGoogle Scholar
  11. 11.
    Y. Ozdemir and S. Gucer, Speciation of manganese in tea leaves and tea infusions, Anal. Lett. 31, 679–689 (1998).Google Scholar
  12. 12.
    A. M. Coriat and R. D. Gillard, Beware the cups that cheer, Nature 321, 570 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    Z. L. Jiang, Z. H. Liu, M. X. Zhao, and W. M. Mo, Novel photochemical voltammetric method for the determination of traces of iron in tea, Anal. Chim. Acta 354, 359–363 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Liu, M. Zhao, and C. Deng, Separation and determination of trace amounts of vanadium (V), chromium (III), and iron (III) with 2-(2-thienylazo)-5-diethylaminophenol chelates by HPLC, J. Chromatogr. 598, 298–302 (1992).CrossRefGoogle Scholar
  15. 15.
    Z. Gao, Z. Zhao, and L. Sheng, Single-sweep polarography of the copper (II)-3-hydroxy-1-p-sulphonatophenyl-3-phenyltriazene complex and its analytical applications, Analyst 115, 951–953 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    Z. Q. Zheng, S. Z. Chen, H. M. Lin, and H. Zhang, Simultaneous determination of Cu, Ni, Pb, Co and Cd by adsorptive voltammetry, Anal. Chim. Acta 272, 227–232 (1993).CrossRefGoogle Scholar
  17. 17.
    M. Satake, J. Miura, S. Usami, and B. K. Puri, Use of dimethylglyoxime, acenaphthenequinone dioxime and mixed ligands of dimethylglyoxime and acenaphthenequinone dioxime supported on naphtalene for the pre-concentration and determination of nickel in alloys, tea and water samples using AAS, Analyst 114, 813–818 (1989).CrossRefGoogle Scholar
  18. 18.
    Z. Q. Zhang, H. Liu, H. Zhang, and Y. F. Li, Simultaneous cathodic stripping voltammetric determination of Hg, Co, Ni and Pd by mixed binder carbon paste electrode containing dimethylglyoxime, Anal. Chim. Acta 333, 119–124 (1996).CrossRefGoogle Scholar
  19. 19.
    P. R. Reddy and S. J. Reddy, Elemental concentrations in medicinally important leafy materials, Chemosphere 34, 2193–2212 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Vera García, I. Basualdo, I. Peralta, M. De Herbia, and S. Caballero, Minerals content of Paraguayan yerba mate (Ilex paraguariensis, S.H.), Arch. Latinoam. Nutr. 47, 77–80 (1997).PubMedGoogle Scholar
  21. 21.
    J. J. Powell, S. M. Greenfield, H. G. Parkes, J. K. Nicholson, and R. P. Thompson, Gastro-intestinal availability of aluminum from tea, Food Chem. Toxicol. 31, 449–454 (1993).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Zeyuan, T. Bingying, L. Xiaolin, H. Jinming, and C. Yifeng, Effect of green tea and black tea on the metabolisms of mineral elements in old rats, Biol. Trace Element Res. 65, 75–86 (1998).Google Scholar
  23. 23.
    I. R. Record, J. K. McInerney, and I. E. Dreosti, Black tea, green tea, and tea polyphenols. Effect on trace element status in weanling rats, Biol. Trace Element Res. 53, 27–43 (1996).Google Scholar
  24. 24.
    G. A. Pedersen, G. K. Mortensen, and E. H. Larsen, Beverages as a source of toxic trace element intake, Food Addit. Contam. 11, 351–363 (1994).PubMedGoogle Scholar
  25. 25.
    M. Brune, L. Rossander, and L. Hallberg, Iron absorption and phenolic compounds: importance of different phenolic structures, Eur. J. Clin. Nutr. 43, 547–557 (1989).PubMedGoogle Scholar
  26. 26.
    G. Weber and G. Schwedt, Types of binding of iron, copper, and zinc in various varietes of tea, Z. Lebensm. Unters. Forsch. 178, 110–114 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    W. R. L. Cairns, S. J. Hill, and L. Ebdon, Directly coupled HPLC-ICP-MS for the determination of organometallic species in tea, Michrochem. J. 54, 88–110 (1996).CrossRefGoogle Scholar
  28. 28.
    A. E. Hagerman and L. G. Butler, Protein precipitation method for the quantitative determination of tannins, J. Agric. Food Chem. 26, 809–812 (1978).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Katarzyna Wróbel
    • 1
  • Kazimierz Wróbel
    • 1
  • Edith Madaí Colunga Urbina
    • 2
  1. 1.Instituto de Investigaciones CientíficasUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.the Facultad de QuímicasUniversidad Autónoma de SaltilloMexico

Personalised recommendations