Biological Trace Element Research

, Volume 78, Issue 1–3, pp 179–189 | Cite as

Marginal copper deficiency and atherosclerosis

  • Iona M. J. Hamilton
  • William S. Gilmore
  • J. J. Strain


Copper is an essential trace element in the maintenance of the cardiovascular system. Copper-deficient diets can elicit, in animals, structural and functional changes that are comparable to those observed in coronary heart disease. In this study, the effect of dietary-induced copper deficiency on aortic lesion development was measured by quantitative image analysis in C57BL/6 mice that are susceptible to diet-induced aortic lesions. The diets administered were severely copper deficient (0.2 mg/kg diet), marginally deficient (0.6 mg/kg diet), or copper adequate (6.0 mg/kg diet). Similarly, increased aortic lesion areas and elevated serum cholesterol were demonstrated in both deficient groups, compared with the copper-adequate group. Evidence for graded differences in copper status among the dietary groups was shown by the dose-response increase in liver copper concentration, copper-zinc superoxide dismutase and cytochrome-c oxidase activities, together with serum caeruloplasmin oxidase with increasing intakes of dietary copper. Despite the difference in copper status between the copper marginal and severely deficient groups, similar lesions found in both groups of mice suggest a threshold effect of copper deficiency on lesion formation.

Index Entries

Copper atherosclerosis aortic lesion C57BL/6 mice marginal deficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Olivaries and R. Uauy, Copper as an essential micro-nutrient, Am. J. Clin. Nutr. 63(Suppl.), 791–796, (1996).Google Scholar
  2. 2.
    R. Uauy, M. Olivaries, and M. Gonzalez, Essentially of copper in humans, Am. J. Clin. Nutr. 67(Suppl.), 952–959 (1998).Google Scholar
  3. 3.
    V. Jutum, Copper and cardiovascular disease, Trace Elem. Electrolytes 16, 55–60 (1999).Google Scholar
  4. 4.
    K. G. D. Allen and L. M. Klevay, Copper: an antioxidant nutrient for cardiovascular health, Curr. Opin. Lipidol. 5, 22–28 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    D. M. Mederios and R. C. E. Wildman, Newer findings on a unified perspective of copper restriction and cardiomyopathy, Proc. Soc. Exp. Biol. Med. 215, 299–313 (1997).Google Scholar
  6. 6.
    R. Nath, Copper deficiency and heart disease. Molecular basis, recent advances and current concepts, Int. J. Biochem. Cell Biol. 29, 1245–1254 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Jalial, D. M. Mederios, and R. E. C. Wildman, Aspects of cardiomyopathy are exacerbated by dietary fat in copper restricted rats, J. Nutr. 126, 807–816 (1996).Google Scholar
  8. 8.
    S. M. Mao, D. M. Mederios, and R. E. C. Wildman, Cardiac hypertrophy in copper deficient rats is owing to increased mitochondria, Biol. Trace Element Res. 64, 175–184 (1998).Google Scholar
  9. 9.
    J. R. Prohaska, Changes in Cu, Zn SOD, CCO, GPx and gluthatione transferase activities in copper deficient mice and rats, J. Nutr. 121, 355–363 (1991).PubMedGoogle Scholar
  10. 10.
    J. R. Prohaska, Response of rat cuproenzymes to variable dietary copper, J. Nutr. Biochem. 8, 316–321 (1997).CrossRefGoogle Scholar
  11. 11.
    C. C. Lai, W. W. Huang, A. Askari, L. M. Klevay, and T. H. Chin, Expression of GPx and catalase in copper deficient rat liver and heart, J. Nutr. Biochem. 6, 256–262 (1995).CrossRefGoogle Scholar
  12. 12.
    L. Rossi, M. R. Ciriolo, E. Marchesse, A. Demartino, M. Giorgi, and G. Rotilo, Differential decrease of copper content and copper binding to SOD in liver, heart and brain of copper-deficient rats, Biochem. Biophys. Res. Commun. 203, 1028–1034 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Rossi, G. Lippe, E. Marchesse, A. De Mertino, I. Marelli, G. Rotilio, et al., Decrease in CCO protein in heart mitochondria of copper deficient rats, Biometals 11, 207–212 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    I. Bureau, C. G. Lewis, and M. Fields, Effect of hepatic iron on hypercholesterolaemia and hypertriglycaemia in copper deficient, fructose fed rats, Nutrition 14, 366–371 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    A. A. Al-Othmann, F. Rosenstein, and K. Lei, Copper deficiency increases in vivo synthesis of fatty acids, triacylglycerols ans phospholipids in rats, Proc. Soc. Exp. Med. Biol. 204, 97–103 (1993).Google Scholar
  16. 16.
    A. A. Al-Othmann, F. Rosenstein, and K. Y. Lei, Pool size and concentration of plasma cholesterol are increased and tissue copper levels are reduced during early stages of copper deficiency in rats, J. Nutr. 124, 628–635 (1994).Google Scholar
  17. 17.
    F. H. Nielsen and D. B. Milne, High dietary fructose affects plasma cholesterol concentrations and signs of short-term copper deprivation in men, Proc. Natl. Acad. Sci. USA 46, 73 (1992).Google Scholar
  18. 18.
    S. K. Nelson, C. C. Huang, M. M. Matthias, and K. G. D. Allen, Copper-marginal and copper deficient diets decrease aortic prostacyclin production and copper-dependent SOD activity and increase lipid peroxidation in rats, J. Nutr. 122, 2102–2108 (1992).Google Scholar
  19. 19.
    A. Mazur, E. Gneux, I. Bureau, C. FilletCourdray, E. Rock, and T. Rayssiguier, Copper deficiency and lipid peroxidation, Atherosclerosis 137, 443–445 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    P. K. Singal, N. Kharper, V. Palace, and D. Kumar, The role of oxidative stress in the genesis of heart disease, Cardiovasc. Res. 40, 426–432 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Holioet and D. Collen, Oxidation of lipoproteins in the pathogenesis of atherosclerosis, Atherosclerosis 137(Suppl.), 33–38 (1998).CrossRefGoogle Scholar
  22. 22.
    Sub-committee on the 10th edition of the Recommended Dietary Allowances, Food and Nutrition Board, in National Research Council: Recommended Dietary Allowances, 10th ed., National Academy, Washington DC (1989).Google Scholar
  23. 23.
    L. M. Klevay, J. P. Buchet, and V. W. Buker, Copper in the Western diet. (Belgium, Canada, UK and USA), in Trace Elements in Man and Animals, M. Anke, D. Meisser, and C. F. Mills, eds., TEMA 8, Verlag Media Tourustik, Gersdorf, pp. 207–210 (1993).Google Scholar
  24. 24.
    L. M. Klevay and D. M. Mederios, Deliberations and evaluations of the approaches, endpoints and paradigrams for dietary recommendations about copper, J. Nutr. 26(Suppl.), 2419–2426 (1993).Google Scholar
  25. 25.
    P. J. Aggett and Fairweather-Tait. Adaptation to high and low copper intakes its relevance to estimated safe and adequate dietary intakes. Am. J. Clin. Nutr. 67(Suppl.), 965–971 (1998).Google Scholar
  26. 26.
    B. Paigen, B. Ishida, J. Verstuyft, r. B. Winters, and D. Albee, Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice, Atherosclerosis 10, 316–323 (1990).Google Scholar
  27. 27.
    J. L. Stewart-Phillips and J. Lough, Pathology of atherosclerosis in cholesterol-fed susceptible mice, Atherosclerosis 90, 211–218 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    P. G. Reeves, L. R. Kerry, and L. A. Johnson, Maintenance requirements for copper in adult mice fed AIN-93M rodent diet, Nutr. Res. 14, 1219–1226 (1994).CrossRefGoogle Scholar
  29. 29.
    P. M. Nishina, J. Verstuyft, and B. Paigen, Synthetic low and high fat diets for the study of atherosclerosis in the mouse, J. Lipid Res. 31, 859–869 (1990).PubMedGoogle Scholar
  30. 30.
    P. M. Nishina, S. Lowe, J. Verstuyft, J. K. Naggert, F. A. Kuypers, and B. Paigen, Effects of dietary fats from animal and plant sources on diet induced fatty streak lesions in C57BL/6 mice, J. Lipid Res. 34, 1413–1422 (1993).PubMedGoogle Scholar
  31. 31.
    B. Paigen, A. Morrow, R. A. Holmes, D. A. Mitchell, and R. A. Williams, Quantitative assessment of atherosclerotic lesions in mice, Atherosclerosis 68, 231–240 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    D. G. Jones and N. F. Suttle, Some effects of copper deficiency on leucocyte function in cattle and sheep, Res. Vet. Sci. 31, 151–156 (1981).PubMedGoogle Scholar
  33. 33.
    D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–157 (1967).PubMedGoogle Scholar
  34. 34.
    L. Smith, Spectrophotometric assay of cytochrome c oxidase, in Methods of biochemical analysis, D Glick, ed., Wiley, New York, pp. 427–434 (1955).CrossRefGoogle Scholar
  35. 35.
    H. E. Abei, Catalase, Methods Enzymol. 2, 121–126 (1974).Google Scholar
  36. 36.
    M. M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  37. 37.
    R. J. Henry, N. Chiamori, S. L. Jacobs, and M. Segalove, Determination of caeruloplasmin oxidase in serum, Proc. Soc. Exp. Biol. Med. 104, 620–624 (1960).Google Scholar
  38. 38.
    N. Y. Yount, D. J. McNamara, A. A. Al-Othmann, and K. Y. Lei, The effect of copper deficiency on rat hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity, J. Nutr. Biochem. 1, 21–27 (1990).PubMedCrossRefGoogle Scholar
  39. 39.
    S. I. Koo, C. C. Lee, and L. Sabin, Effect of copper deficiency on the hepatic synthesis and release of cholesterol, J. Nutr. Biochem. 4, 162–167 (1993).CrossRefGoogle Scholar
  40. 40.
    B. W. C. Lau and L. M. Klevay, Plasma leicithin: cholesterol acyltransferase in copperdeficient rats, J. Nutr. 111, 1698–1703 (1981).PubMedGoogle Scholar
  41. 41.
    J. R. Prohaska, Serum cholesterol levels are not elevated in young copper-deficient rats, mice or brindled mice, J. Nutr. 115, 1701–1707 (1985).Google Scholar
  42. 42.
    A. Mazur, F. Nassir, E. Gueux, P. Cardot, J. bellanger, M. Lamand, et al., The effect of dietary copper on rat plasma apolipoprotein E and apolipoprotein gene expression in liver and intestine, Biol. Trace Element Res. 34, 107–112 (1992).Google Scholar
  43. 43.
    S. C. Crosswell and K. Y. Lei, Effect of copper deficiency on the apolipoprotein E-rich high density lipoprotein in rats, J. Nutr. 115, 473–482 (1985).Google Scholar
  44. 44.
    T. P. Carr and K. Y. Lei, High-density lipoprotein cholesteryl ester and protein catabolism in hypercholsterolaemic rats induced by copper deficiency, Metabolism 39, 518–524 (1990).PubMedCrossRefGoogle Scholar
  45. 45.
    F. Nassir, A. Mazur, C. Serougne, E. Gueux, and Y. Rayssiguier, Hepatic apolipoprotein B synthesis in copper-deficient rats, FEBS Lett. 322, 33–36 (1993).PubMedCrossRefGoogle Scholar
  46. 46.
    Y. Rayssiguier, E. Gueux, L. Bussiere, and A. Mazur, Copper deficiency increases the susceptibility of lioproteins and tissues to peroxiddation in rats, J. Nutr. 123, 1343–1348 (1993).PubMedGoogle Scholar
  47. 47.
    C. Motta, E. Gueux, A. Mazur, and Y. Rayssiguier, Lipid fluidity of triacyglycerol-rich lipoproteins isolated from copper-deficient rats, Br. J. Nutr. 75, 767–773 (1996).PubMedCrossRefGoogle Scholar
  48. 48.
    C. W. Levenson, Mechanisms of copper conservation in organs, Am. J. Clin. Nutr. 67(Suppl.), 978–981 (1998).Google Scholar
  49. 49.
    M. C. Linder, L. Wooten, P. Cerveza, S. Cotton, R. Shulze, and N. Lomeli, copper transport, Am. J. Clin. Nutr. 67(Suppl.), 965–971 (1998).Google Scholar
  50. 50.
    J. J. Strain, Putative role of dietary trace elements in coronary heart disease and cancer, Br. J. Biomed. Sci. 51, 241–251 (1994).PubMedGoogle Scholar
  51. 51.
    M. Fields, Role of trace elements in coronary heart disease, Br. J. Nutr. 81, 85–86 (1999).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Iona M. J. Hamilton
    • 1
  • William S. Gilmore
    • 1
  • J. J. Strain
    • 1
  1. 1.Northern Ireland Centre for Diet and Health (NICHE)University of Ulster, ColeraineNorthern IrelandUK

Personalised recommendations