Biological Trace Element Research

, Volume 77, Issue 3, pp 219–230 | Cite as

Content of non-mercury-associated selenium in human tissues

  • G. Drasch
  • S. Mailänder
  • C. Schlosser
  • G. Roider


Recent studies have shown that at a higher mercury (Hg) burden, the molar ratio of selenium (Se) and Hg in tissues tends to approximate 1:1 by the formation of biologically largely inert adducts. From the toxicological standpoint, this trapping of free Hg is welcome. However, this binding of Se to Hg reduces the portion of Se in tissues, which is available for the formation of essential selenoenzymes like glutathione peroxidase, type I deiodase, and so forth and could result in a relative deficiency of Se. Therefore, we tried to determine the concentration of non-Hg-associated Se in several human tissues. As there is no proved trace method for the speciation of non-Hg-bound and Hg-bound Se in tissues, the total concentrations of Hg and Se were determined and the portion of non-Hg-associated Se was calculated by the difference of the molar concentrations of Se and Hg. For this investigation, the following tissues were obtained by autopsy from 133 adults: kidney cortex, thyroid gland, liver, spleen, cerebrum cortex, and pituitary gland. In no case was an occupational Hg burden known. The results confirm the assumption of a 1:1 association of Hg and Se in human tissues. The mean concentration of non-Hg-bound Se was calculated to 576 µg/kg in the kidney cortex, 363 µg/kg in the thyroid gland, 308 µg/kg in the liver, 205 µg/kg in the spleen, 111 µg/kg in the cerebrum cortex, and 545 µg/kg in the pituitary gland. In none of the cases under investigation in any tissue was the molar Se/He ratio below 1. This means that a total deficiency of non-Hg-bound Se could not be seen in this normal population, even at a higher Hg burden. Nevertheless, at a suboptimal Se supply like in Germany, any reduction of the part of Se, which is available for the formation of essential seleno-enzymes, should be avoided. Therefore, any additional Hg burden such as from dental amalgam should to be considered critically. The different distribution of Hg and Se in the body confirms that there is a controlled hierarchy in the Se supply of different organs, which tries to prevent a Se deficiency in organs with essential seleno-enzymes like the thyroid gland even under an suboptimal Se supply.

Index Entries

Selenium mercury dental amalgam selenium-mercury complex human tissues kidney thyroid gland liver spleen cerebrum cortex pituitary gland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Drasch, E. Wanghofer, G. Roider, and S. Strobach, Correlation of mercury and selenium in the human kidney, J. Trace Elements Med. Biol. 10, 251–254 (1996).Google Scholar
  2. 2.
    L. Kosta, A. R. Byrne, and V. Zelenko, Correlation between selenium and mercury in man following exposure to inorganic mercury, Nature 254, 238–239 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Nylander, L. Friberg, and B. Lind, Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgam fillings, Swed. Dent. J. 11, 179–187 (1987).PubMedGoogle Scholar
  4. 4.
    J. Yoshinaga, N. Matsuo, H. Imai, M. Nakazawa, T. Suzuki, M. Morita, et al., Interrelationship between the concentrations of some elements in the organs of Japanese with special reference to selenium-heavy metal relationships, Sci. Total Environ. 91, 127–140 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    A. R. Byrne, M. Skreblin, K. Al-Sabti, P. Stegnar, and M. Horvat, Mercury and selenium: perspectives from Idrija, Acta Chim. Slov. 42, 175–198 (1995).Google Scholar
  6. 6.
    H. E. Ganther, C. Goudie, M. L. Sunde, M. J. Kopecky, P. Wagner, S.-H. Oh, et al., Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna, Science 175, 1122–1124 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Horvat, T. Zvonaric, P. Stegnar, A. Prosenc, D. Konda, and A. Sabadin, Relation between total mercury, methylmercury and selenium in fish muscle from the Adriatic Sea, in International Conference—Heavy Metals in the Environment [Proceedings], J.-P. Vernet, ed., CEP Consultants, Geneva, pp. 370–373 (1989).Google Scholar
  8. 8.
    T. Kari and P. Kauranen, Mercury and selenium contents of seals from fresh and brackish waters in Finland, Bull. Environ. Contam. Toxicol. 19, 273–280 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    J. H. Koeman, W. S. M. van de Ven, J. J. M. de Goeij, P. S. Tjioe, and J. L. van Haaften, Mercury and selenium in marine mammals and birds, Sci. Total Environ. 3, 279–287 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    R. J. Norstrom, R. E. Schweinsberg, and B. T. Collins, Heavy metals and essential elements in livers of the polar bear (Ursus maritimus) in the Canadian Arctic, Sci. Total Environ. 48, 195–212 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    G. N. Schrauzer, Quecksilber-Selen—Wechselwirkungen und das Zahnamalgam-Problem, in Status Quo and Perspectives of Amalgam and Other Dental Materials, L. T. Friberg and G. N. Schrauzer, eds., Georg Thieme Verlag, Stuttgart, pp. 106–118 (1995).Google Scholar
  12. 12.
    B. M. Eley, A study of mercury redistribution, excretion and renal pathology in guinea-pigs implanted with powdered dental amalgam for between 2 and 4 years, J. Exp. Pathol. 71, 375–393 (1990).Google Scholar
  13. 13.
    K. T. Suzuki, C. Sasakura, and S. Yoneda, Binding sites for the (Hg-Se) complex on selenoprotein P, Biochim. Biophys. Acta 1429, 102–112 (1998).PubMedGoogle Scholar
  14. 14.
    S. Yoneda and K. T. Suzuki, Detoxification of mercury by selenium by bindung of equimolar Hg-Se complex to a specific plasma protein, Toxicol. Appl. Pharmacol. 143, 274–280 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Yoneda and K. T. Suzuki, Equimolar complex binds to Selenoprotein P, Biochem. Biophys. Res. Commun. 231, 7–11 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    N. G. Carmichael and B. A. Fowler, Effects of separate and combined chronic mercuric chloride and sodium selenate administration in rats: histological, ultrastructural and X-ray microanalytical studies of liver and kidney, J. Environ. Pathol. Toxicol. 3, 399–412 (1980).Google Scholar
  17. 17.
    U. Lindh and E. Johansson, Protective effects of selenium against mercury toxicity as studied in the rat liver and kidney by nuclear analytical techniques, Biol. Trace Element Res. 12, 109–120 (1987).Google Scholar
  18. 18.
    J. Parizek and I. Ostadalova, The protective effect of small amounts of selenite in sublimate intoxication, Experientia 23, 142–143 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    O. Wada, N. Yamaguchi, T. Ono, M. Nagahashi, and T. Morimura, Inhibitory effect of mercury on kidney glutathione peroxidase and its prevention by selenium, Environ. Res. 12, 75–80 (1976).CrossRefGoogle Scholar
  20. 20.
    S. Mailänder, Selen, Quecksilber und deren Zusammenhang in menschlichen Organen, Thesis. Ludwig-Maximilians-Universität, Munich (1998).Google Scholar
  21. 21.
    D. Behne, H. Hilmert, S. Scheid, H. Gessner, and W. Elger, Evidence for specific selenium target tissues and new biologically important selenopoteins, Biochim. Biophys. Acta 966, 12–21 (1988).PubMedGoogle Scholar
  22. 22.
    M. Nylander and J. Weiner, Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population, Br. J. Ind. Med. 48, 729–734 (1991).PubMedGoogle Scholar
  23. 23.
    O. Oster, G. Schmiedel, and W. Prellwitz, The organ distribution of selenium in German adults, Biol. Trace Element Res. 15, 23–45 (1988).CrossRefGoogle Scholar
  24. 24.
    B. Tiran, E. Karpf, and A. Tiran, Age dependency of selenium and cadmium content in human liver, kidney, and thyroid, Arch. Environ. Health 50, 242–246 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Neve, Methods in determination of selenium states, J. Trace Element Electrolytes Health Dis. 5, 1–17 (1991).Google Scholar
  26. 26.
    K. S. Subramanian, J. C. Meranger, and R. T. Burnett, Kidney and liver levels of some major, minor and trace elements in two Ontario communities, Sci. Total Environ. 42, 223–235 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Gross, M. Oertel, and J. Köhrle, Differential selenium-dependent expression of type I 5′-deiodinase and gluthathione peroxidase in the porcine epithelial kidney cell line LLC-PK1, Biochem. J. 306, 851–856 (1995).PubMedGoogle Scholar
  28. 28.
    D. Brune, G. Nordberg, and P. O. Wester, Distribution of 23 elements in the kidney, liver and lungs of workers from a smeltery and refinery in North Sweden exposed to a number of elements and of a control group, Sci. Total Environ. 16, 13–35 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Drasch, I. Schupp, G. Riedl, and G. Günther, Einfluß von Amalgamfüllungen auf die Quecksilberkonzentration in menschlichen Organen, Dtsch. Zahnärztl. Z. 47, 490–496 (1992).Google Scholar
  30. 30.
    R. Schiele, E. M. Freitag, K. H. Schaller, B. Schellmann, and D. Weltle, Untersuchungen zur normalen Quecksilberkonzentration menschlicher Organe, Zbl. Bakt. Hyg. I. Abt. Orig. B. 173, 45–62 (1981).Google Scholar
  31. 31.
    J. A. Weiner and M. Nylander, The relationship between mercury concentrations in human organs and different predictor variables, Sci. Total Environ. 138, 101–115 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Drobner, M. Anke, and B. Röhrig, The selenium intake of adults in three federal counties of Germany. In: Ninth International Symposium on Trace Elements in Man and Animals, Banff Centre for Conferences, ed., NRC Research Press, Ottawa (1996).Google Scholar
  33. 33.
    O. Oster and W. Prellwitz, The daily dietary selenium intake of West German adults, Biol. Trace Element Res. 20, 1–14 (1989).CrossRefGoogle Scholar
  34. 34.
    C. Sasakura and R. T. Suzuki, Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P, J. Inorg. Biochem. 71, 159–162 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    D. Behne, C. Weiss-Nowak, M. Kalcklösch, C. Westphal, H. Gessner, and A. Kyriakopoulos, Studies on the distribution and characteristics of new mammalian selenium-containing proteins, Analyst 120, 823–825 (1995).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • G. Drasch
    • 1
  • S. Mailänder
    • 1
  • C. Schlosser
    • 1
  • G. Roider
    • 1
  1. 1.Institut für Rechtsmedizin der Ludwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations