Biological Trace Element Research

, Volume 75, Issue 1–3, pp 139–155 | Cite as

Preliminary study on the determination of selenium compounds in some selenium-accumulating mushrooms

  • Zdenka Šlejkovec
  • Johannes T. van Elteren
  • Urszula D. Woroniecka
  • Koos J. Kroon
  • Ingrid Falnoga
  • Anthony R. Byrne


Using various chromatographic techniques (size exclusion, anion exchange, and cation exchange) combined with several detectors (neutron activation analysis and atomic fluorescence spectrometry), an attempt was made to characterize selenium compounds in some edible, selenium-accumulating mushrooms (Albatrellus pes-caprae and Boletus edulis).

The mushrooms contained mostly low-molecular-weight (6 kDa) selenium compounds. After proteolysis, only a small fraction of the extractable selenium could be identified as selenite (3.0–9.2%, Albatrellus pes-caprae), selenocystine (minor, Albatrellus pes-caprae; 7.5%, Boletus edulis), or selenomethionine (1.0%, Boletus edulis), leaving the form of the bulk still to be elucidated.

Index Entries

Selenium speciation mushrooms chromatography atomic fluorescence spectrometry neutron activation analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Behne, A. Kyriakopoulos, C. Weiss-Nowak, M. Kalcklosch, C. Westphal, and H. Gessner, Newly found selenium-containing proteins in the tissues of the rat, Biol. Trace Element Res. 55, 99–110 (1995).CrossRefGoogle Scholar
  2. 2.
    D. Behne, C. Hammel, H. Pfeifer, D. Rothlein, H. Gessner, and A. Kyriakopoulos, Speciation of selenium in the mammalian organism, Analyst 123, 871–873 (1998).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Behne, C. Weiss-Nowak, M. Kalcklosch, C. Westphall, H. Gessner, and A. Kyriakopoulos, Studies on the distribution and characteristics of new mammalian selenium-containing proteins, Analyst 120, 823–825 (1995b).CrossRefGoogle Scholar
  4. 4.
    C. Reilly, Selenium in Food and Health, Blackie, London, pp. 242–248 (1996).Google Scholar
  5. 5.
    X. Dauchy, M. Potin-Gautier, A. Astruc, and M. Astruc, Analytical methods for the speciation of selenium compounds: a review, Fresenius J. Anal. Chem. 348, 792–805 (1994).CrossRefGoogle Scholar
  6. 6.
    K. Yasumoto, T. Suzuki, and M. Yoshida, Identification of selenomethionine in soybean protein, J. Agric. Food Chem. 36, 463–467 (1988).CrossRefGoogle Scholar
  7. 7.
    M. B. de la Calle-Guntinas, C. Brunori, R. Scerbo, S. Chiavarini, P. Quevauviller, F. Adams, et al., Determination of selenomethionine in wheat samples: comparison of gas chromatography-microwave-induced plasma atomic emission spectrometry, gas chromatography-flame photometric detection and gas chromatography-mass spectrometry, J. Anal. Atomic Spectrom. 12, 1041–1046 (1997).CrossRefGoogle Scholar
  8. 8.
    H. Ge, X.-J. Cai, J. F. Tyson, P. C. Uden, E. R. Denoyer, and E. Block, Identification of selenium species in selenium-enriched garlic, onion and broccoli using high-performance ion chromatography with inductively coupled plasma mass spectrometry detection, Anal. Commun. 33, 279–281 (1996).CrossRefGoogle Scholar
  9. 9.
    W. Maher, M. Deaker, D. Jolley, F. Krikowa, and B. Roberts, Selenium occurrence, distribution and speciation in the cockle Anadara trapezia and the mullet Mugil cephalus, Appl. Organomet. Chem. 11, 313–326 (1997).CrossRefGoogle Scholar
  10. 10.
    H. M. Crews, P. A. Clarke, D. J. Lewis, L. M. Owen, and P. R. Strutt, Investigation of selenium speciation in in vitro gastrointestinal extracts of cooked cod by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray mass spectrometry, J. Anal. Atomic Spectrom. 11, 1177–1182 (1996).CrossRefGoogle Scholar
  11. 11.
    S. Piepponen, M. J. Pellinen, and T. Hattula, The selenium of mushrooms, in Trace Elements—Analytical Chemistry in Medicine and Biology, P. Brätter and P. Schrammel, eds., Walter de Gruyter, Berlin, Vol. 3 (1984).Google Scholar
  12. 12.
    J. T. van Elteren, U. D. Woroniecka, and K. J. Kroon, Accumulation and distribution of selenium and cesium in the cultivated mushroom Agaricus bisporus—a radiotraceraided study, Chemosphere 36, 1787–1798 (1998).CrossRefGoogle Scholar
  13. 13.
    M. W. Chansler, M. Mutanen, V. C. Morris, and A. O. Levander, Nutritional bioavailability to rats of selenium in Brazil nuts and mushrooms, Nut. Res. 6, 1419–1428 (1986).CrossRefGoogle Scholar
  14. 14.
    M. Mutanen, Bioavailability of selenium in mushrooms, Boletus edulis, to young women, Int. J. Vitam. Nutr. Res. 56, 297–301 (1986).PubMedGoogle Scholar
  15. 15.
    National Research Council, Recommended Dietary Allowances, National Academy of Sciences, Washington, DC (1980).Google Scholar
  16. 16.
    T. Stijve and E. Cardinale, Selenium and mercury content of some edible mushrooms, Trav. Chim. Alim. Hyg. 65, 476–478 (1974).Google Scholar
  17. 17.
    A. R. Byrne, L. Kosta, and V. Ravnik, Trace element concentrations in higher fungi, Sci. Total Environ. 6, 65–78 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Kosta, A. R. Byrne, V. Zelenko, P. Stegnar, M. Dermelj, and V. Ravnik, Studies on the uptake, distribution and transformations of mercury in living organisms in the Idrija region and comparative areas, Vestnik Slov. Kem. Drustva 21, 49–76 (1974).Google Scholar
  19. 19.
    J. P. Quinche, Les teneurs en sélénium de 95 espèces de champignons et de quelques terres, Rech. Agronom Suisse 22, 137–144 (1983).Google Scholar
  20. 20.
    T. Stijve, Selenium content of mushrooms, Z. Lebensm. Unters. Forsch. 164, 201–203 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    T. Stijve and R. Besson, Mercury, cadmium, lead and selenium content of mushroom species belonging to the genus Agaricus, Chemosphere 2, 151–158 (1976).CrossRefGoogle Scholar
  22. 22.
    J. P. Quinche, L’Agaricus bitorquis, un étonnant accumulateut de mercure, de sélénium et de cuivre, Bull. Romand. Mycol. 8, 12–13 (1979).Google Scholar
  23. 23.
    T. Stijve, T. Noorloos, A. R. Byrne, Z. Šlejkovec, and W. Goessler, High selenium levels in edible Albatrellus mushrooms, Dtsch. Lebensm. Rundsch. 94, 275–279 (1998).Google Scholar
  24. 24.
    R. Munoz Olivas, O. F. X. Donard, C. Cámara, and P. Quevauviller, Analytical techniques applied to the speciation of selenium in environmental matrices, Anal. Chim. Acta 286, 357–370 (1994).CrossRefGoogle Scholar
  25. 25.
    P. D. Whanger, Y. Xia, and C. D. Thomson, Protein techniques for selenium speciation in human body fluids, J. Trace Elements Electrolytes Health Dis. 8, 1–7 (1994).Google Scholar
  26. 26.
    K. Pyrzynska, Speciation analysis of some organic selenium compounds. A review, Analyst 121, 77R-83R (1996).CrossRefGoogle Scholar
  27. 27.
    G. Alsing Pedersen and E. H. Larsen, Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry, Fresenius J. Anal. Chem. 358, 591–598 (1997).CrossRefGoogle Scholar
  28. 28.
    M. M. Gómez, T. Gasparic, M. A. Palacios, and C. Cámara, Determination of five selenium compounds in urine by liquid chromatography with focused microwave assisted digestion and hydride generation-atomic absorption spectrometric detection, Anal. Chim. Acta 374, 241–251 (1998).CrossRefGoogle Scholar
  29. 29.
    R. J. Kraus, S. J. Foster, and H. E. Ganther, Analysis of trimethylselenonium ion in urine by high-performance liquid chromatography, Anal. Biochem. 147, 432–436 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Goessler, D. Kuehnelt, C. Schlagenhaufen, K. Kalcher, M. Abegaz, and K. J. Irgolic, Retention behavior of inorganic and organic selenium compounds on a silica-based strong-cation-exchange column with an inductively coupled plasma mass spectrometer as selenium-specific detector, J. Chromatogr. A 789, 233–245 (1997).CrossRefGoogle Scholar
  31. 31.
    J. M. González Lafuente, M. L. Fernández Sánchez, and A. Sanz-Medel, Speciation of inorganic selenium and selenoaminoacids by on-line reversed-phase high-performance liquid chromatography-focused microwave digestion-hydride generation-atomic detection, J. Anal. Atomic Spectrom. 11, 1163–1169 (1996).CrossRefGoogle Scholar
  32. 32.
    F. Laborda, M. V. Vicente, J. M. Mir, and J. R. Castillo, Evaluation of on-line coupling size exclusion chromatography electrothermal atomic absorption spectrometry for selenium determination, Fresenius J. Anal. Chem. 357, 837–843 (1997).CrossRefGoogle Scholar
  33. 33.
    D. W. Bryce, A. Izquierdo, and M. D. Luque de Castro, Speciation of inorganic selenium using flow injection hydride generation atomic fluorescence spectrometry, J. Anal. Atomic Spectrom. 10, 1059–1063 (1995).CrossRefGoogle Scholar
  34. 34.
    Y. He, H. El Azouzi, M. Luisa Cervera, and M. de la Guardia, Completely integrated on-line determination of dissolved selenium (IV) and total inorganic selenium in seawater by flow injection hydride generation atomic fluorescence spectrometry, J. Anal. Atomic Spectrom. 13, 1291–1296 (1998).CrossRefGoogle Scholar
  35. 35.
    M. J. Ahmed, C. D. Stalikas, P. G. Veltsistas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, Simultaneous spectrofluorimetric determination of selenium (IV) and (VI) by flow injection analysis, Analyst 122, 221–226 (1997).PubMedCrossRefGoogle Scholar
  36. 36.
    R. Rubio, A. Padró, and G. Rauret, Photoreduction-hydride generation: a new on-line system for the determination of selenate and selenite, Anal. Chim. Acta 353, 91–97 (1997).CrossRefGoogle Scholar
  37. 37.
    M. Vilanó, A. Padró, R. Rubio, and G. Rauret, Organic and inorganic selenium speciation using high-performance liquid chromatography with UV irradiation and hydride-generation-quartz cell atomic absorption spectrometric detection, J. Chromatogr. A 819, 211–220 (1998).CrossRefGoogle Scholar
  38. 38.
    A. R. Byrne, M. Tušek-Žnidarič, B. K. Puri, and K. J. Irgolic, Studies on the uptake and binding of trace metals in fungi. Part II, Arsenic compounds in Laccaria amethystina, Appl. Organomet. Chem. 5, 25–32 (1991).CrossRefGoogle Scholar
  39. 39.
    N. Gilon, M. Potin-Gautier, and M. Astruc, Optimization of the determination of inorganic and organic selenium species using high-performance liquid chromatography-electrothermal atomic absorption spectrometry, J. Chromatogr. A 750, 327–334 (1996).CrossRefGoogle Scholar
  40. 40.
    B. Smodiš, M. Dermelj, and R. Jaćimović, Determination of trace-elements in tobacco using different techniques of neutron-activation analysis, J. Radioanal. Nucl. Chem., Articles 190, 3–11 (1995).CrossRefGoogle Scholar
  41. 41.
    Z. Šlejkovec, J. T. van Elteren, and A. R. Byrne, A dual arsenic speciation system combining liquid chromatographic and purge and trap gas chromatographic separation with atomic fluorescence spectrometric detection, Anal. Chim. Acta 358, 51–60 (1998).CrossRefGoogle Scholar
  42. 42.
    K. Takatera, N. Osaki, H. Yamaguchi, and T. Watanabe, HPLC/ICP mass spectrometric study of the selenium incorporation into cyanobacterial metallothionein induced under heavy-metal stress, Anal. Sci. 10, 567–572 (1994).Google Scholar
  43. 43.
    K. Lerch, Copper metallothionein, a copper-binding protein from Neurospora crassa, Nature 284, 368–370 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    A. R. Byrne and M. Tušek-Žnidarič, Studies of the uptake and binding of trace-metals in fungi. 1. Accumulation and characterization of mercury and silver in the cultivated mushroom, Agaricus bisporus, Appl. Organomet. Chem. 4, 43–48 (1990).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Zdenka Šlejkovec
    • 1
    • 2
  • Johannes T. van Elteren
    • 1
  • Urszula D. Woroniecka
    • 1
  • Koos J. Kroon
    • 1
  • Ingrid Falnoga
    • 2
  • Anthony R. Byrne
    • 2
  1. 1.Interfaculty Reactor InstituteDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations