Biological Trace Element Research

, Volume 74, Issue 3, pp 259–273

A survey of trace elements in pteridophytes

  • Takuo Ozaki
  • Schuichi Enomoto
  • Yoshitaka Minai
  • Shizuko Ambe
  • Yoshihiro Makide


Concentration of 11 trace elements (Ca, Sc, Cr, Fe, Co, Zn, Rb, Cs, Ba, La, and Ce) in 96 pteridophytes (fern and fern ally species) was determined by instrumental neutron activation analysis to evaluate a concentration range for each element and also to find species characteristic in the uptake of trace elements. Asplenium trichomanes was found to accumulate Sc, Cr, and Co to the highest concentrations among 96 pteridophytes. The highest concentration of Ca and Zn was observed for Asplenium obscurum. The other Pteridophytes exhibited only one element whose concentration was the highest. A positive correlation was found between the concentrations of Fe and Sc, and also between the concentrations of Cr and Co. The remarkable accumulation of lanthanides (La and Ce) was observed mainly in diversifying genera (Polystichum and Dryopteris in Dryopteridaceae, Diplazium in Woodsiaceae, and Asplenium in Aspleniaceae).

Index Entries

Pteridophytes fern fern ally concentration trace element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Foy, Commun. Soil. Sci. Plant. Anal. 19, 959–987 (1988).Google Scholar
  2. 2.
    H. Marchner, Plant Soil 134, 1–20 (1991).Google Scholar
  3. 3.
    L. Didierjean, P. Frendo, W. Nasser, G. Genot, J. Marivet, and G. Burkard, Planta 199, 1–8 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Yoshida and Y. Muramatsu, Sci. Total Environ. 157, 197–205 (1994).CrossRefGoogle Scholar
  5. 5.
    S. Gouthu, T. Arie, S. Ambe, and I. Yamaguchi, J. Radioanal. Nucl. Chem. 222, 247–251 (1997).CrossRefGoogle Scholar
  6. 6.
    C. M. Lederer and V. S. Shirley, Table of Isotopes, 7th ed., Wiley, New York (1978).Google Scholar
  7. 7.
    A. Ando, H. Kamioka, S. Terashima, and S. Itoh, Geochem. J. 23, 143–148 (1989).Google Scholar
  8. 8.
    T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, F. Ambe, and T. Tominaga, J. Radioanal. Nucl. Chem. 217, 117–124 (1997).CrossRefGoogle Scholar
  9. 9.
    M. Koyama, M. Shirakawa, J. Takada, Y. Katayama, and T. Matsubara, J. Radioanal. Nucl. Chem. 112, 489–506 (1987).CrossRefGoogle Scholar
  10. 10.
    H. J. M. Bowen, Environmental Chemistry of the Elements, Academic, London (1979).Google Scholar
  11. 11.
    A. J. Aller, J. L. Bernal, M. J. Nozal, and L. Deban, J. Sci. Food. Agric. 51, 447–479 (1990).CrossRefGoogle Scholar
  12. 12.
    H. Kuppelwieser and U. Feller, Plant Soil 132, 281–288 (1991).Google Scholar
  13. 13.
    J. A. Laszlo, Plant Physiol. 104, 937–944 (1994).PubMedGoogle Scholar
  14. 14.
    E. Ochiai, J. Chem. Ed. 55, 631–633 (1987).CrossRefGoogle Scholar
  15. 15.
    P. Linsalata, R. S. Morse, H. Ford, M. Eisenbud, E. P. France, M. B. Decastro, et al., Health Phys. 56, 33–46 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Campbell, W. W. Thomson, and K. Platt, J. Exp. Bot. 25, 61–69 (1974).CrossRefGoogle Scholar
  17. 17.
    K. H. Harmet, Plant Physiol. 64, 1094–1098 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    P. H. Brown, A. H. Rathjen, R. D. Graham, and D. E. Tribe, Rare earth elements in biological systems, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, Jr. and L. Eyring, eds., Elsevier, Amsterdam, Vol. 13, pp. 423–452 (1990).Google Scholar
  19. 19.
    T. Das, A. Sharma, and G. Talukder, Biol. Trace. Element Res. 18, 201–208 (1987).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Takuo Ozaki
    • 1
    • 2
  • Schuichi Enomoto
    • 2
  • Yoshitaka Minai
    • 3
  • Shizuko Ambe
    • 2
  • Yoshihiro Makide
    • 1
  1. 1.Radioisotope Center, School of ScienceThe University of TokyoTokyoJapan
  2. 2.The Institute of Physical and Chemical Research (RIKEN)SaitamaJapan
  3. 3.Faculty of HumanitiesMusashi UniversityTokyoJapan

Personalised recommendations