Biological Trace Element Research

, Volume 113, Issue 1, pp 53–66 | Cite as

High-dose chromium(III) supplementation has no effects on body mass and composition while altering plasma hormone and triglycerides concentrations

  • Randall Bennett
  • Bobbi Adams
  • Amanda French
  • Yasmin Neggers
  • John B. Vincent
Original Articles


Chromium is generally believed to be an essential element and is often claimed to have value as a weight loss or muscle building agent. Recent studies in humans and rats have failed to demonstrate effects on body composition, although recent studies with pharmacological doses of the cation [Cr(III)3O(O2CCH2CH3)6(H2O)3]+ (or Cr3) (≤1 mg Cr/kg body mass) in rats have noted a trend toward body mass loss and fat mass loss. Thus, the effects of large gavage doses of Cr3 (1–10 mg Cr/kg) on body mass, organ mass, food intake, and blood plasma variables (insulin, glucose, leptin, cholesterol, and triglycerides) were examined over a 10-wk period using male Sprague-Dawley rats. No effects on body composition were noted, although Cr3 administration lowered (p<0.05) plasma insulin, leptin, and triglycerides concentrations. As Cr3 is absorbed greater than 10-fold better than commercially available nutritional supplements, the lack of an effect of the Cr(III) compound at these levels of administration clearly indicates that Cr(III) supplements do not have an effect on body composition at any reasonable dosage.

Index Entries

Chromium aspartame saccharin insulin leptin cholesterol Cr3 rats body composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Flegal, M. D. Carrol, C. L. Ogden, and C. L. Johnson, Prevalence and trends in obesity among US adults 1999–2000, JAMA 288, 1723–1727 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    J. B. Vincent, The bioinorganic chemistry of chromium(III), Polyhedron 20, 1–26 (2001).CrossRefGoogle Scholar
  3. 3.
    J. B. Vincent, Elucidating a biological role for chromium at a molecular level, Acc. Chem. Res. 33, 503–510 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    H. C. Lukaski, Chromium as a supplement, Annu. Rev. Nutr. 19, 279–301 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    G. W. Evans, The effect of chromium picolinate on insulin controlled parameters in humans, Int. J. Biosoc. Med. Res. 11, 163–180 (1989).Google Scholar
  6. 6.
    G. R. Kaats, J. A. Wise, K. Blum, et al., The short-term therapeutic efficacy of treating obesity with a plant of improved nutrition and moderate calorie restriction, Curr. Ther. Res. 51, 261–274 (1992).Google Scholar
  7. 7.
    G. R. Kaats, K. Blum, J. A. Fisher, and J. A. Adelman, Effects of chromium picolinate supplementation on body composition: a randomized double-masked placebo-controlled study, Curr. Ther. Res. 57, 747–756 (1996).CrossRefGoogle Scholar
  8. 8.
    R. Bulbulian, D. D. Pringle, and M. S. Liddy, Chromium picolinate supplementation in male and female swimmers, Med. Sci. Sport. Exerc. 28(5 Suppl.), S111 (1996).Google Scholar
  9. 9.
    B. Bahadori, S. Wallner, H. Schneider, T. C. Wascher, and H. Topak, Effects of chromium yeast and chromium picolinate on body composition in obese non-diabetic patients during and after a very low-calorie diet, Acta Med. Austr. 24, 185–187 (1997) (in German).Google Scholar
  10. 10.
    S. P. Clancy, P. M. Clarkson, M. E. DeCheke, et al., Effects of chromium picolinate supplementation on body composition, strength and urinary chromium loss in football players, Int. J. Sport Nutr. 4, 142–153 (1994).PubMedGoogle Scholar
  11. 11.
    L. K. Trent and D. Thielding-Canel, Effects of chromium picolinate on body composition, J. Sports Med. Phys. Fitness 35, 273–280 (1995).PubMedGoogle Scholar
  12. 12.
    H. C. Lukaski, W. Bolonchuk, W. A. Siders, and D. B. Milne, Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men, Am. J. Clin. Nutr. 63, 954–965 (1996).PubMedGoogle Scholar
  13. 13.
    M. A. Hallmark, T. H. Reynolds, C. A. DeSouza, C. G. Dotson, R. A. Anderson, and M. A. Rogers, Effects of chromium on resistance training on muscle strength and body composition, Med. Sci. Sports Exerc. 28, 139–144 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    W. J. Pasman, M. S. Westerperp-Plantenga, and W. H. M. Saris, The effectiveness of long-term supplementation of carbohydrate, chromium, fibre, and caffeine on weight maintenance, Int. J. Obes. Related Metab. Disord. 21, 1143–1151 (1997).CrossRefGoogle Scholar
  15. 15.
    W. W. Campbell, L. J. Joseph, S. L. Davey, D. Cyr-Campbell, R. A. Anderson, and W. J. Evans, Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men, J. Appl. Physiol. 86, 29–39 (1999).PubMedGoogle Scholar
  16. 16.
    R. I. Press, J. Geller, and G. W. Evans, The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects, West. J. Med. 152, 41–45 (1990).PubMedGoogle Scholar
  17. 17.
    R. B. Krieder, R. Klesges, K. Harmon, et al., Effects of ingesting supplements designed to promote lean muscle tissue accretion on body composition during resistance training, Int. J. Sports Nutr., 6, 234–246 (1996).Google Scholar
  18. 18.
    J. B. Vincent, The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent, Sports Med. 33, 213–230 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    M. H. Pittler, C. Stevinson, and E. Ernst, Chromium picolinate for reducing body weight: meta-analysis of randomized trials, Int. J. Obes. 27, 522–529 (2003).CrossRefGoogle Scholar
  20. 20.
    S. L. Nissen, and R. L. Sharp, Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis, J. Appl. Physiol. 94, 651–659 (2003).PubMedGoogle Scholar
  21. 21.
    B. J. Clodfelder, B. M. Gullick, H. C. Lukaski, Y. Neggers, and J. B. Vincent, Oral administration of the biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ increases insulin sensitivity and improves blood plasma variables in healthy and type 2 diabetic rats, J. Biol. Inorg. Chem. 10, 119–130 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    B. J. Clodfelder, C. Chang, and J. B. Vincent, Absorption of the biomimetic chromium cation triaqua-µ3-oxo-triaqua-µ-hexapropionatotrichromium(III) in rats, Biol. Trace Element Res. 98, 159–169 (2004).CrossRefGoogle Scholar
  23. 23.
    K. L. Olin, D. M. Stearns, W. H. Armstrong, and C. L. Keen, Comparative retention/absorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate and 51Cr picolinate in a rat model, Trace Elements Electrolytes 11, 182–186 (1994).Google Scholar
  24. 24.
    R. A. Anderson, N. A. Bryden, M. M. Polansky, and K. Gauteschi, Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats, J. Trace Elements Exp. Med. 9, 11–25 (1996).CrossRefGoogle Scholar
  25. 25.
    C. Sun, W. Zhang, S. Wang, and Y. Zhang, Effect of chromium gluconate on body weight, serum leptin and insulin in rats, Wei Sheng Yan Jiu 29, 370–371 (2000) (in Chinese).PubMedGoogle Scholar
  26. 26.
    S. Wang, C. Sun, Q. Kao, and C. Yu, Effects of chromium and fish oil on insulin resistance and leptin resistance in obese developing rats, Wei Sheng Yan Jiu 30, 284–286 (2001) (in Chinese).PubMedGoogle Scholar
  27. 27.
    B. M. Gullick, Ph.D. dissertation, The University of Alabama, Tuscaloosa (2005).Google Scholar
  28. 28.
    A. Earnshaw, B. N. Figgis, and J. Lewis, Chemistry of polynuclear compounds. Part VI. Magnetic properties of trimer chromium and iron carboxylates, J. Chem. Soc. 1656–1663 (1966).Google Scholar
  29. 29.
    J. S. Striffler, J. S. Law, M. M. Polansky, S. J. Bhathena, and R. A. Anderson, Chromium improves insulin response to glucose in rats, Metabolism 44, 1314–1320 (1995).PubMedCrossRefGoogle Scholar
  30. 30.
    R. A. Anderson, N. A. Bryden, and M. M. Polansky, Lack of toxicity of chromium chloride and chromium picolinate in rats, J. Am. Coll. Nutr. 16, 273–279 (1997).PubMedGoogle Scholar
  31. 31.
    D. L. Hasten, M. Hegsted, M. J. Keenan, and G. S. Morris, Effects of various forms of dietary chromium on growth and body composition in the rat, Nutr. Res. 17, 283–294 (1997).CrossRefGoogle Scholar
  32. 32.
    D. L. Hasten, M. Hegsted, M. J. Keenan, and G. S. Morris, Dosage effects of chromium picolinate on growth and body composition in the rat, Nutr. Res. 17, 1175–1186 (1997).CrossRefGoogle Scholar
  33. 33.
    G. S. Morris, K. A. Guidry, M. Hegsted, and D. L. Hasten, Effects of dietary chromium supplementation on cardiac mass, metabolic enzymes, and contractile proteins, Nutr. Res. 15, 1045–1052 (1995).CrossRefGoogle Scholar
  34. 34.
    A. Sclafani, and M. Abrams, Rats show only a weak preference for the artificial sweetener aspartame, Physiol. Behav. 37, 253–256 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    J. C. Smith, T. W. Castonguay, D. F. Foster, and L. M. Bloom, A detailed analysis of glucose and saccharin drinking in the rat, Physiol. Behav. 24, 173–176 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    B. Beck, A. Burlet, J.-P. Max, and A. Stricker-Krongrad, Effects of long-term ingestion of aspartame on hypothalamic neuropeptide Y, plasma leptin and body weight gain and composition, Physiol. Behav. 75, 41–47 (2002).PubMedCrossRefGoogle Scholar
  37. 37.
    K. P. Porikas, and H. S. Koopmans, The effect of non-nutritive sweeteners on body weight in rats, Appetite 11(Suppl. 1) 12–15 (1998).Google Scholar
  38. 38.
    B. J. Rolls, Effects of intense sweeteners on hunger, food intake, and body weight: a review, Am. J. Clin. Nutr. 53, 872–878 (1991).PubMedGoogle Scholar
  39. 39.
    Y. Sun, K. Mallya, J. Ramirez, and J. B. Vincent, The biomimetic [Cr3O(O2CCH2CH3)6 (H2O)3]+ decreases plasma cholesterol and triglycerides in rats: towards chromium-containing therapeutics, J. Biol. Inorg. Chem. 4, 838–845 (1999).PubMedCrossRefGoogle Scholar
  40. 40.
    Y. Sun, B. J. Clodfelder, A. A. Shute, T. Irvin, and J. B. Vincent, The biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ decreases plasma insulin, cholesterol and triglycerides in healthy and type II diabetic rats but not type I diabetic rats, J. Biol. Inorg. Chem. 7, 852–862 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    J. K. Speetjens, A. Parand, M. W. Crowder, and J. B. Vincent, Low-molecular-weight chromium-binding substance and biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ do not cleave DNA under physiologically relevant conditions, Polyhedron 18, 2617–2624 (1999).CrossRefGoogle Scholar
  42. 42.
    J. K. Speetjens, R. A. Collins, J. B. Vincent, and S. A. Woksi, The nutritional supplement chromium(III) tris(picolinate) cleaves DNA, Chem. Res. Toxicol. 12, 483–487 (1999).PubMedCrossRefGoogle Scholar
  43. 43.
    B. Debski, Z. Krejpcio, T. Kuryl, R. Wokciak, and M. Lipko, Biomimetic chromium(III) complex and frutan supplementation affect insulin and membrane glucose transport in rats, J. Trace Elements Exp. Med. 17, 206–207 (2004).Google Scholar
  44. 44.
    Z. Krejpcio, B. Debski, R. Wojciak, T. Kuryl, and M. Tubacka, Biomimetic chromium(III) complex and fructan supplementation improve blood variables in STZ-induced diabetic rats, J. Trace Elem. Exp. Med. 17, 207–208 (2004).Google Scholar
  45. 45.
    C. M. Davis, A. C. Royer, and J. B. Vincent, Synthetic multinuclear chromium assembly activates insulin receptor tyrosine kinase activity: functional model for low-molecular-weight chromium-binding substance, Inorg. Chem. 36, 5316–5320 (1997).CrossRefGoogle Scholar
  46. 46.
    A. A. Shute, and J. B. Vincent, The stability of the biomimetic cation triaqua-μ-oxohexa-propionatotrichromium(III) in vivo in rats, Polyhedron 20, 2241–2252 (2001).CrossRefGoogle Scholar
  47. 47.
    A. A. Shute, and J. B. Vincent, The fate of the biomimetic cation triaqua-μ-oxohexapro-pionatotrichromium(III) in rats, J. Inorg. Biochem. 89, 272–282 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Randall Bennett
    • 1
  • Bobbi Adams
    • 1
  • Amanda French
    • 1
  • Yasmin Neggers
    • 2
  • John B. Vincent
    • 1
  1. 1.Departments of Chemistry and Coalition for Biomolecular ProductsThe University of AlabamaTuscaloosa
  2. 2.Department of Human Nutrition and Coalition for Biomolecular ProductsThe University of AlabamaTuscaloosa

Personalised recommendations