Advertisement

Biological Trace Element Research

, Volume 112, Issue 3, pp 193–203 | Cite as

Impact of Cu and Fe concentrations on oxidative damage in male infertility

  • Birsen Aydemir
  • Ali Riza Kiziler
  • Ilhan Onaran
  • Bulent Alici
  • Hamdi Ozkara
  • Mehmet Can Akyolcu
Original Articles

Abstract

Oxidative stress in the reproductive system is thought to have an effect on the fertilizing ability of sperm. The purpose of this study was to assess the interaction of iron (Fe) and copper (Cu) ions in suspected subfertile and fertile male groups and to find out the relationships of the semen parameters (sperm count, motility, and abnormal morphology), glutathione, malondialdehyde, and reactive oxygen species with these variables. Semen and blood obtained from 60 subfertile men and from 40 fertile volunteers were examined. The sperm count and motility in the subfertile male group were found lower than those in fertile male group (p<0.001). Cu levels in serum and seminal plasma in the subfertile male group were significantly higher than those in the fertile male group (p<0.001 and p<0.05, respectively). There was also a significant increase in the Fe level of seminal plasma in the subfertile male group (p<0.001). However, there was no significant difference in the Fe level of serum in the subfertile male group. In conclusion, these findings suggest that Cu and Fe might be mediators of the effects of oxidative damage and play an essential role in spermatogenesis and male infertility; the determination of Fe and Cu levels in serum and seminal plasma during infertility investigation is recommended.

Index Entries

Male infertility semen analysis oxidative damage Cu Fe MDA GSH ROS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Halliwell and J. M. C. Gutteridge, Role of free radicals and catalytic metal ions in human disease, Methods Enzymol. 186, 1–85 (1990).PubMedGoogle Scholar
  2. 2.
    R. F. Boyer and C. L. McCleary, Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release, Free Radical Biol. Med. 3, 389–395 (1987).CrossRefGoogle Scholar
  3. 3.
    R. J. Aitken and K. M. West, Analysis of the relationship between reactive oxygen species production and leukocyte infiltration in fractions of human semen separated on percoll gradients, Int. J. Androl. 13, 433–451 (1990).PubMedGoogle Scholar
  4. 4.
    E. de Lamirande and C. Gagnon, A positive role for the superoxide anion in triggering hyreractivation and capacitation of human spermatozoa, Int. J. Androl. 16, 21 (1993).PubMedGoogle Scholar
  5. 5.
    K. P. Skandhan, Review on copper in male reproduction and contraception, Rev. Fr. Gynecol. Obstet. 87, 594–598 (1992).PubMedGoogle Scholar
  6. 6.
    B. Halliwell and J. M. C. Gutteridge. Free Radicals in Biology and Medicine, 3rd ed., Oxford University Press, London (2000).Google Scholar
  7. 7.
    L. Ernster, Lipid peroxidation in biological membranes: mechanisms and implications, in Active Oxygen, Lipid Peroxides and Antioxidants, K. Yagi, ed., CRC, Boca Raton, pp. FL, 1–38 (1993).Google Scholar
  8. 8.
    V. Darley-Usmar, H. Wiseman, and B. Halliwell, Nitric oxide and oxygen radicals: a question of balance, FEBS Lett. 369, 131–135 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    D. B. Taourel, M. C. Guerin, and J. Torreilles, Is malondialdehyde a valuable indicator of lipid peroxidation? Biochem. Pharmacol. 44, 985–988 (1992).CrossRefGoogle Scholar
  10. 10.
    D. S. Irvine, Glutathione as a treatment for male infertility, J. Reprod. Fertil. 1, 6–12 (1996).Google Scholar
  11. 11.
    B. Ketterer, B. Coles, and D. J. Meyes, The role of glutathione in detoxification Environ. Health Perspect. 49, 59–69 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    World Health Organization (WHO), Laboratory Manual for the Examination of Human Semen and Semen-Cervical Mucus Interaction, 4th ed., Cambridge University Press, New York (1999).Google Scholar
  13. 13.
    I. Alkan, F. Simsek, G. Haklar, et al., Reactive oxygen species production by the spermatozoa of patients with idiopatic infertility: relationship to seminal plasma antioxidants, J. Urol. 157, 140–143 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    R. J. Aitken, D. S. Irvine, and F. C. Wu, Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility, Am. J. Obstet. Gynecol. 164, 542–551 (1991).PubMedGoogle Scholar
  15. 15.
    G. Barroso, M. Morshedi, and S. Oehninger, Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa, Hum. Reprod. 15(6), 1338–1344 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Brys, A. D. Nawrocka, E. Miekos, et al., Zinc and cadmium analyses in human prostate neoplasm, Biol. Trace Element Res. 59, 145–152 (1997).Google Scholar
  17. 17.
    J. A. Buege and S. T. D. Aust, Microsomal lipid peroxidation, Methods Enzymol. 52, 302–310 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    J. D. Adams, B. H. Lauterburg, and J. R. Mickell, Plasma glutathione and glutathione disulphide in the rat and response to oxidative stress, J. Pharmacol. Exp. Ther. 227, 749–754 (1983).PubMedGoogle Scholar
  19. 19.
    E. Gil-Guzman, M. Ollero, M. C. Lopez, R. K. Sharma, J. G. Alvarez, and A. J. Thomas, Jr., Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation, Hum. Reprod. 16, 1922–1930 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    B. Halliwell and J. M. C. Gutteridge, Oxygen-free radicals and iron in relation to biology and medicine, Arch. Biochem. Biophys. 246, 501–514 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    R. J. Aitken, J. S. Clarkson, and S. Fishel, Generation of reactive oxygen species, lipid peroxidation, and human sperm function, Biol. Reprod. 40, 183–197 (1989).CrossRefGoogle Scholar
  22. 22.
    R. D'Agata, E. Vicari, and M. L. Moncada, Generation of reactive oxygen species in subgroups of intertile men, Int. J. Androl. 13, 344 (1990).PubMedGoogle Scholar
  23. 23.
    A. Iwasaki and C. Gagnon, Formation of reactive oxygen species in spermatozoa of infertile patients, Fertil. Steril. 57, 409 (1992).PubMedGoogle Scholar
  24. 24.
    W. Y. Wong, G. Flik, and P. M. W. Groenen, The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men, Reprod. Toxicol. 15, 131–136 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    L. Roblero, A. Guadarrama, T. Lopez, and F. Zegers-Hochschild, Effect of copper ion on the motility, viability, acrosome reaction and fertilizing capacity of human spermatozoa in vitro, Reprod. Fertil. Dev. 8, 871–874 (1996).PubMedCrossRefGoogle Scholar
  26. 26.
    F. Jockenhövel, M. Bals-Pratsch, H. P. Bertrom, and E. Nieschlag, Seminal lead and copper in fertile and infertile men, Andrology 22, 503–511 (1990).CrossRefGoogle Scholar
  27. 27.
    D. J. Ackerman, A. J. Reinecke, H. S. Els, D. G. Grobler, and S. A. Reinecke, Sperm abnormalities associated with high copper levels in impala, Ecotoxicol. Environ. Safety 43, 261–266 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    N. Pant and S. P. Srivastava, Correlation of trace mineral concentrations with fructose, gamma-glutamyl transpeptidase, and acid phosphatase in seminal plasma of different catogories of infertile men, Biol. Trace Element Res. 93(1–3), 31–38 (2003).CrossRefGoogle Scholar
  29. 29.
    A. Menditto, D. Pientraforte, and M. Minetti, Ascorbic acid in human seminal plasma is protected from iron-mediated oxidation, but is potentially exposed to copper-induced damage, Hum. Reprod. 12(8), 1699–1705 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. L. Huang, W. C. Tseng, S. Y. Cheng, and T. H. Lin, Trace elements and lipid peroxidation in human seminal plasma, Biol. Trace Element Res. 76(3), 207–215 (2000).CrossRefGoogle Scholar
  31. 31.
    A. Kwenang, M. J. Kros, J. F. Koster, and H. G. van Eijk, Iron, ferritin and copper in seminal plasma, Hum. Reprod. 2(5), 387–388 (1987).PubMedGoogle Scholar
  32. 32.
    R. J. Potts, L. J. Notarianni, and T. M. Jefferies, Seminal plasma, reduces exogenous oxidative damage to human sperm, determined by the measurement of DNA strand breaks and lipid peroxidation, Mutat. Res. 447, 249–256 (2000).PubMedGoogle Scholar
  33. 33.
    H. Nakamura, T. Kimura, and A. Nakajima, Detection of oxidative stress in seminal plasma and fractionated sperm from subfertile male patients, Eur. J. Obstet. Gyneco-Repord. Biol. 105, 155 (2002).Google Scholar
  34. 34.
    F. R. Ochsendorf, R. Buhl, A. Böstlein, and H. Beschmann, Glutathione in spermatozoa and seminal plasma of infertile men, Hum. Reprod. 13(2), 353–359 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Lenzi, M. Picardo, L. Gandini, F. Lombardo, O. Terminali, and F. Dondero, Glutathione treatment of dyspermia: effect on the lipoperoxidation process, Hum. Reprod. 9, 2044–2050 (1994).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Birsen Aydemir
    • 1
  • Ali Riza Kiziler
    • 1
  • Ilhan Onaran
    • 2
  • Bulent Alici
    • 3
  • Hamdi Ozkara
    • 3
  • Mehmet Can Akyolcu
    • 1
  1. 1.Department of Biophysics, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
  2. 2.Department of Medical Biology, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
  3. 3.Department of Urology, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations