Biological Trace Element Research

, Volume 111, Issue 1–3, pp 23–29 | Cite as

Serum and hair levels of zinc, selenium, iron, and copper in children with iron-deficiency anemia

  • Metin Kaya Gürgöze
  • Ali Ölçücü
  • A. Denizmen Aygün
  • Erdal Taşkin
  • Mehmet Kiliç
Original Articles


In the present study, the serum and hair levels of zinc, selenium, and copper were determined in children with iron-deficiency anemia (IDA). A total of 52 anemic children aged 1–4 yr constituted the study group. Fortysix healthy children acted as controls. The copper and zinc levels were measured with an atomic absorption spectrophometer. Serum and hair selenium was determined by a spectroflourometric method. The serum zinc and selenium concentrations in the IDA group were found to be significantly lower and serum copper significantly higher than those in the controls (p<0.05). Lower iron, zinc, and selenium concentrations (p<0.001) but not copper were found in hair (p>0.05).

Index Entries

Iron deficiency anemia zinc selenium copper hair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. M. Diaz-Gomez, E. Domenech, F. Barroso, S. Castells, C. Cortabarria, and A. Jimenez, The effect of zinc supplemention on linear growth, body composition, and growth factors in preterm infants, Pediatrics 111, 1002–1009 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    F. A. Oski, Iron deficiency in infancy and childhood, N. Engl. J. Med. 329, 190–196 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    M. A. Aukett, Y. A. Parks, P. H. Scott, and B. A. Wharton, Treatment with iron increases weight gain and pschomotor development, Arch. Dis. Child 71, 877–880 (1986).Google Scholar
  4. 4.
    M. H. N. Golden, The nature of nutritional deficiency in relation to growth failure and poverty, Acta Paediatr. Scand. 374 (Suppl.), 95–110, (1991).Google Scholar
  5. 5.
    C. Nacy and K. R. Adrews, Disorders of iron metabolism and sideroblastic anemia, in Nathan and Oski's Haematology of Infancy and Childhood, D. G. Natha, and S.H. Orkin, eds., W. B. Saunders, Philadelphia, pp. 424–452 (1998).Google Scholar
  6. 6.
    I. W. Booth, Iron deficiency anemia in infancy and early childhood, Arch. Dis. Child. 76, 549–554 (1997).PubMedGoogle Scholar
  7. 7.
    A. Prasad, A. Miale, Z. Farid, and H. H. Sanstead, Zinc metabolizm in patients with the syndrome of iron deficiency anemia, hypogonadizm, and dwarfism, J. Lab. Clin. Med. 61, 483–490 (1963).Google Scholar
  8. 8.
    A. Prasad, Discovery of human zinc deficiency and studies in an experimental human model, Am. J. Clin. Nutr. 53, 403–412 (1991).PubMedGoogle Scholar
  9. 9.
    A. Ece, B. S. Uyanik, A. Işcan, P. Ertan, and M. R. Yiĝitoĝlu, Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia, Biol. Trace. Element Res. 59, 31–39 (1997).Google Scholar
  10. 10.
    J. Hastka, J. J. Lasserre, A. Schwarzbeck, and R. Hehlmann, Central role of zinc protoporphyrin in staging iron deficiency, Clin. Chem. 40, 768–773 (1994).PubMedGoogle Scholar
  11. 11.
    H. Tapiero, D. M. Townsend, and K. D. Tew, Trace elements in human physiology and pathology. Copper, Biomed. Pharmacother.. 57, 386–398 (2003).CrossRefGoogle Scholar
  12. 12.
    W. A. Nacy, Trace elements, in Clinical Chemistry, A. K. Lawrence, ed., Mosby, Philadelphia, pp. 746–754 (1995).Google Scholar
  13. 13.
    R. E. Litow and G. F. Combs, Selenium in pediatric nutrition, Pediatrics 87, 339–346 (1991).Google Scholar
  14. 14.
    M. L. Hu and J. E. Spallholz, Dietary selenium and aniline-induced methemoglobinemia in rats, Toxicol. Lett. 25, 205–210 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    C. K. Chow and C. J. Chen, Dietary selenium and age-related susceptibility of rat erythrocytes to oxidative damage, J. Nutr. 110, 2460–2466 (1980).PubMedGoogle Scholar
  16. 16.
    P. Bermejo-Barrera, O. Muniz-Naveiro, A. Moreda-Pineiro, and A. Bermejo-Barrera, Experimental designs in the optimisation of ultrasonic bath-acid-leaching procedures for the determination of trace elements in human hair samples by atomic absorption spectrometry. Forensic. Sci. Int. 107, 105–120 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Ölçücü and P. Çaĝlar, Zinc levels in human hair and serum of infants and children and their relationship to various diseases in the upper Euphrates basin, J. Trance. Elements Exp. Med. 6, 141–145 (1993).Google Scholar
  18. 18.
    L. Lalonde, Y. Jean, K. D. Roberts, A. Chapdelaine, and G. Blean, Fluorometry of selenium in serum. Clin. Chem. 28, 172–174 (1982).PubMedGoogle Scholar
  19. 19.
    M. Hambidge, Biomarkers of trace mineral intake and status, J. Nutr. 133, 948–955 (2003).Google Scholar
  20. 20.
    P. R. Dallman, R. Yip, and C. Johnson, Prevalence and causes of anemia in the United states, 1976–1980, Am. J. Clin. Nutr. 39, 437–445 (1994).Google Scholar
  21. 21.
    Y. Eroĝlu and G. Hiçsönmez, Hacettepe Üniversitesi Çocuk Hastanesi'nde anemi görülme sikliĝi ve nedenleri, Çocuk Saĝhĝi ve Hastaliklari Dergisi 37, 267–271 (1994).Google Scholar
  22. 22.
    M. K. Yadrick, M. A. Kenney, and E. A. Winterfeldt, Iron, copper and zinc status: response to supplementation with zinc or zinc and iron in adult females, Am. J. Clin. Nutr. 49, 145–150 (1989).PubMedGoogle Scholar
  23. 23.
    L. S. Valberg, P. R. Flanagan, and M. J. Chamberlain, Effects of iron, tin and copper on zinc absorption in humans, Am. J. Clin. Nutr. 40, 536–541 (1984).PubMedGoogle Scholar
  24. 24.
    L. Mikhailova, E. Keen, and K. Roskova, Iron, copper and zinc concent in healty person and iron deficiency anemia patients, Vurr. Boles. 20, 114–121 (1981).Google Scholar
  25. 25.
    A. E. Gomez, F. Lisbona, A. I. Lopez, et al., The absorbtion of iron, calcium, phosohorus, magnesium, copper and zinc in the jejunum-ileum of control and iron deficient rats, Lab. Anim. 32, 72–79 (1998).Google Scholar
  26. 26.
    A. Shukla, K. N. Agarwal, and G. S. Shukla, Effects of latent iron deficiency on the levels of iron, calcium, zinc, copper, manganese, cadmium and lead in liver, kidney and spleen of growing rats, Res. Art. 146, 751–752 (1990).Google Scholar
  27. 27.
    S. Yetgin, F. Hincal, N. Başaran, and G. Ciliv, Serum selenium status in children with iron deficiency anemia, Acta Haematol. 88, 185–188 (1992).PubMedGoogle Scholar
  28. 28.
    L. S. McAnulty, S. S. Gropper, S. R. McAnulty, and R. E. Keith, Iron depletion without anemia is not associated with impaired selenium status in college-aged women, Biol. Trace. Element Res. 91, 125–136 (2003)CrossRefGoogle Scholar
  29. 29.
    S. Yetgin, G. Ciliv and Ç. Altay, Neutrophil glutathione peroxidase activety in iron deficiency anemia, Scand. J. Haematol. 36, 58–60 (1986).Google Scholar
  30. 30.
    R. Rodvien, A. Gillum, and L. R. Weintrauh, Decreased glutathione peroxidas activity secondary to severe iron deficiency: a possible mechanism responsible for the shorter life span of the iron-deficient red cell, Blood 43, 281–285 (1974).PubMedGoogle Scholar
  31. 31.
    P. M. Moriarty, M. F. Picciano, J. L. Beard, and C. C. Reddy, Classical selenium-dependent glutatione peroxidase expression is decreased secondary to iron deficiency in rats, J. Nutr. 125, 293–301 (1995).PubMedGoogle Scholar
  32. 32.
    R. Laitinen, E. Vuori, and H. K. Akerblom, Hair zinc and copper: relationship to type and serum concentrations in children and adolescents, Biol. Trace. Element Res, 16, 227–237 (1988).Google Scholar
  33. 33.
    H. M. Huang, P. L. Leung, D. Z. Sun, and M. G. Zhu, Hair and serum calcium, iron, copper, and zinc levels during normal pregnancy at three trimesters, Biol. Trace. Element Res. 69, 111–120 (1999).Google Scholar
  34. 34.
    E. Hac, J. Krechniak, and M. Szyszko, Selenium levels in human plasma and hair in northern Poland, Biol. Trace. Element Res. 85, 277–285 (2002).CrossRefGoogle Scholar
  35. 35.
    M. Folin, E. Contiero, and G. M. Vaselli, Trace element determination in humans. The use of blood and hair, Biol. Trace. Element Res. 31, 147–158 (1991).CrossRefGoogle Scholar
  36. 36.
    S. B. Deeming and C. W. Weber, Hair analysis of trace minerals in humans subjects as influenced by age, sex, and contraceptive drugs, Am. J. Clin. Nutr. 31, 1175–1180 (1978).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Metin Kaya Gürgöze
    • 1
  • Ali Ölçücü
    • 2
  • A. Denizmen Aygün
    • 1
  • Erdal Taşkin
    • 1
  • Mehmet Kiliç
    • 1
  1. 1.Department of Pediatrics, Faculty of MedicineFirat UniversityElaziĝTurkey
  2. 2.Department of Chemistry, Faculty of Science and ArtsFirat UniversityElaziĝTurkey

Personalised recommendations