Advertisement

Biological Trace Element Research

, Volume 111, Issue 1–3, pp 151–165 | Cite as

Low doses of lead

Effects on reproduction and development in rats
  • César Teijón
  • Rosa Olmo
  • Dolores Blanco
  • Arturo Romero
  • José M. Teijón
Original Articles

Abstract

The effects of exposure to high doses of lead on reproduction and development have been established, but not so those caused by low lead doses or the influence that life stage at which contact with the metal takes place might have. The aim of this work was to study the effects of 200 and 400 ppm lead acetate in drinking water on reproduction and development as well as on renal and hepatic parameters of rats at different life stages, from gestation to 3 mo postweaning. The results indicate a dose-dependent effect on reproduction, with variations in the number of births and in pups' weight. Development was mostly affected at the weaning stage, with hemoglobin levels and erythrocyte numbers significantly decreased. The lead levels in tissues, blood, urine, and feces along with selected renal and hepatic parameters (blood urea nitrogen, creatinine, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) were determined. There were histological, blood urea nitrogen, alanine aminotransferase, and alkaline phosphatase changes in the first month postweaning. After 3 mo, these changes are no longer evident, possibly because of metabolic adaptation.

Index Entries

Lead exposure gestation postweaning birth hepatic markers renal markers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Goyer, Results of lead research: prenatal exposure and neurological consequences, Environ. Health Perspect. 104, 1050–1054 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Chen, K. A. Golemboski, F. S. Sanders, and R. Dietert, Persistent effect of in utero meso-2,3-dimercaptosuccinic acid (DMSA) on immune function and lead-induced immunotoxicity, Toxicology 132, 67–79 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Baron, and P. Leroy, Impact de la qualité de l'eau et de la longuer du réseau sur la concentration en plomb au robinet de l'utilisateur, Tech. Sci. Methodes 1, 27–34 (2001).Google Scholar
  4. 4.
    N. Arnich, M. C. Lanhera, F. Laurensob, R. Podor, A. Montiel, and D. Burnel, In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite, Environ. Pollut. 124, 139–149 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Gürer, H. Özgünes, R. Neal, D. R. Spitz, and N. Erçal, Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats, Toxicology, 128, 181–189 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    A. R. Dehpour, M. Essalat, S. Ala, M. Ghazi-Khansari, and P. Ghafourifar, Increase by NO synthase inhibitor of lead-induced release of N-acetyl-beta-D-glucosaminidase from perfused rat kidney, Toxicology 132, 119–125 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    J. M. Davis, R. W. Elias, and L. D. Grant, Current issues in human lead exposure an regulation of lead. Neuro Toxicology 14(2–3), 15–28 (1993).Google Scholar
  8. 8.
    M. J. J. Ronis, J. Gandy, and T. Badger, Endocrine mechanisms underlying reproductive toxicity in the developing rat chronically exposed to dietary lead, J. Toxicol. Environ. Health A 54, 77–99 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    I. Hertz-Picciotto, The evidence that lead increases the risk for spontaneous abortion, Am. J. Ind. Med. 38, 300–309 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    P. J. Markowitz and X. M. Shen, Assessment of bone lead during pregnancy: a pilot study. Environ. Res. 85, 83–89 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    P. J. Landrigan, P. Boffetta, and P. Apostoli, The reproductive toxicity and carcinogenicity of lead: a critical review, Am. J. Ind. Med. 38, 231–243 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    I. Iavicoli, G. Carelli, E. J. Stanek, N. Castellino, and E. J. Cal, Of dietary lead on red blood cell production in male and female mice, Toxicol. Lett. 137(3), 193–199 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Struzynska, M. Walski, R. Gadamski, B. Dabrowska-Bouta, and U. Rafalowska, Lead-induced abnormalities in blood-brain permeability in experimental chronic toxicity, Mol. Chem. Neuropathol. 31, 207–224 (1997).PubMedGoogle Scholar
  14. 14.
    H. Coffigny, A. Thoreux-Manalay, Pinon-Lataillade, G. Monchaux, R. Masse, and J. C. Soufir, Effects of lead poisoning of rats during pregnancy on the reproductive system and fertility of their offspring, Hum. Exp. Toxicol. 13, 241–246 (1994).PubMedCrossRefGoogle Scholar
  15. 15.
    M. J. J. Ronis, M. Shahare, C. Mercado, D. Irby, and T. Badger, Disrupted reproductive physiology and pubertal growth in rats exposed to lead during different developmental periods, Biol. Reprod. 50S, 76 (1994).Google Scholar
  16. 16.
    C. Teijón, J. M. Socorro, J. A. Mart Accumulation in rats an nonacute doses and short periods of time: hepatic, renal and hematological effects, Ecotoxicol. Environ. Restor. 3(1), 36–41 (2000).Google Scholar
  17. 17.
    L. J. M. Zinterhofer, P. I. Jatlow, and A. Fappiano, Atomic absorption determination of lead in blood and urine in the presence of EDTA, J. Lab. Clin. Med. 78, 664–674 (1971).PubMedGoogle Scholar
  18. 18.
    G. L. Humason, Animal Tissue Techniques, 4th ed, Freeman, New York (1971).Google Scholar
  19. 19.
    K. W. Andrews, D. A. Savitz, and I. Hertz-Picciotto, Prenatal lead exposure in relation to gestacional age and birth weight: a review of epidemiological studies, Am. J. Ind. Med. 26, 13–32 (1994).PubMedGoogle Scholar
  20. 20.
    Å. Irgens, K. Krüger, A. H. Skorve, and L. M. Irgens, Reproductive outcome in offspring of parents occupationally exposed to lead in Norway, Am. J. Ind. Med. 34, 431–437, (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    P. B. Hammond and P. A. Succop, Effects of supplemental nutrition on lead-induced depression of growth and food consumption in weanling rats, Toxicol. Appl. Pharmacol. 131, 80–84 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    R. L. Bornschein, P. A. Succop, K. M. Krafft, C. S. Clark, B. Peace, and P. B. Hammond, Exterior surface dust lead interior house dust lead and chilhood lead exposure in an urban environment. Trace Substan Environ. Health 20, 322–332 (1986).Google Scholar
  23. 23.
    H. W. Mielke, and P. L. Reagan, Soil is an important pathway of human lead exposure, Environ. Health Perspect. 106(1) 217–229 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    W. M. Bennett, Lead neuropathy, Kidney Int. 28, 212–219 (1985).PubMedGoogle Scholar
  25. 25.
    M. J. J. Ronis, T. M. Badger, S. J. Shema, P. K. Roberson, and F. Shaikh, Effects on pubertal growth and reproduction inrats exposed to lead perinatally or continuosly throughout development, J. Toxicol. Environ. Health A 53, 327–341 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Sakai, Y. Morita, T. Araki, M. Kano, and T. Yoshida, Relationship between delta-aminolevulinic acid dehydratase genotypes and heme precursors in lead workers, Am. J. Ind. Med. 38, 355–360 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Martinez-Tabche, M. A. Grajeda y Ortega, B. Ramirez Mora, C. German Faz, E. López López, and M. Galar Martinez, Hemoglobin concentration and acetylcholinesterase activity of oligochaetes in relation to lead concentration in spiked sediments from Ignacio Ramirez reservoir, Ecotoxicol. Environ. Safety 49, 76–83 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    J. E. Lee, S. Chen, K. A. Golemboski, P. J. Parsons, and R. R. Dietert, Development windows of differential lead-induced immunotoxicity in chickens, Toxicology 156, 161–170 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Sivaprasad, M. Nagaraj, and P. Varalkshmi, Combined efficacies of lipoic acid and 2,3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver, J. Nutr. Biochem. 15, 18–23 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    S. S. Haneef, D. Swarup, S. K. Dwivedi, and P. K. Dash, Effects of concurrent exposure to lead and cadmium on renal function in goats, Small Ruminant Res. 28, 257–261 (1998).CrossRefGoogle Scholar
  31. 31.
    A. K. Gupta, J. Q. del Rosso, C. W. Lynde, G. H. Brown, and N. H. Shear, Hepatitis associated with terbinafine therapy: three case report and a review of the literature, Clin. Exp. Dermatol. 23(2), 64–67 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    G. S. Gupta, J. Singh, and A. Gupta, Trace metals and metalloenzymes in placenta after oral administration of lead acetate, Biol. Trace Element Res. 60, 145–152 (1997).Google Scholar
  33. 33.
    B. Nehru and S. Kaushal, Biochemical and histological alterations following experimental lead poisoning, J. Trace Elements Exp. Med. 4, 203–209 (1991).Google Scholar
  34. 34.
    I. Corpas, M. Castillo, D. Marquina, and M. J. Benito. Lead intoxication in gestational and lactation periods alters the development of male reproductive organs, Ecotoxicol. Environ. Safety 53, 259–266 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    M. A. Cuadrado, D. Hernández de Heredia, and J. A. de Pedro, Evalución bioqu de la funcionalidad e integridad hepática, in Cirugía Hepática Experimental, J. Arias, L. Lorente, M. A. Aller, et al., eds., Kronos, Zaragoza, Spain, pp. 127–160 (1993).Google Scholar
  36. 36.
    J. Blasco and J. Puppo, Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia), Comp. Biochem. Physiol. C 122, 253–263 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • César Teijón
    • 1
  • Rosa Olmo
    • 2
  • Dolores Blanco
    • 2
  • Arturo Romero
    • 1
  • José M. Teijón
    • 2
  1. 1.Departmento de Ingeniería Química, Facultad de Ciencias QuímicasUniversided Complutense de MadridMadridSpain
  2. 2.Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad Complutense de MadridMadridSpain

Personalised recommendations