Advertisement

Biological Trace Element Research

, Volume 110, Issue 2, pp 179–190 | Cite as

Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach

  • Fan Yang
  • Fashui Hong
  • Wenjuan You
  • Chao Liu
  • Fengqing Gao
  • Cheng Wu
  • Ping Yang
Article

Abstract

Previous research showed that nano-TiO2 could significantly promote photosynthesis and greatly improve growth of spinach, but, we also speculated that an increase of spinach growth by nano-TiO2 treatment might be closely related to the change of nitrogen metabolism. The effects of nano-anatase TiO2 on the nitrogen metabolism of growing spinach were studied by treating them with nano-anatase TiO2. The results showed that, nano-anatase TiO2 treatment could obviously increase the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic-pyruvic transaminase during the growing stage. Nano-anatase TiO2 treatment could also promote spinach to absorb nitrate, accelerate, inorganic nitrogen (such as NO 3 t- −N and NH 4 + −N) to be translated into organic nitrogen (such as protein and chlorophyll), and enhance the fresh weight and dry weights.

Index Entries

Nano-anatase TiO2 spinach nitrate reductase glutamate dehydrogenase inorganic nitrogen organic nitrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Crabtree, A new type of hydrogen bond, Science 282, 200–2001 (1998).CrossRefGoogle Scholar
  2. 2.
    L. Zheng, F. S. Hong, S. P. Lu, and C. Liu, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biol. Trace Element Res. 104(1), 82–93 (2005).CrossRefGoogle Scholar
  3. 3.
    F. S. Hong, P. Yang, F. Q. Gao, et al.., Effect of nano-anatase TiO2 on spectral characterization of photosystem II particles from spinach, Chem. Res. Chin. Univ. 21(2), 196–200 (2005).Google Scholar
  4. 4.
    F. S. Hong, F. Yang, C. et al.., Influences of nano-TiO2 on the chloroplast ageing of spinach under light, Biol. Trace Element Res. 104(3), 249–260 (2005).CrossRefGoogle Scholar
  5. 5.
    F. S. Hong, J. Zhou, C. Liu, et al.., Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach, Biol. Trace Element Res. 105, 269–280 (2005).CrossRefGoogle Scholar
  6. 6.
    B. B. Buchanan, W. Gruissen, and R. L. Johones, Biochemistry and Molecular Biology of Plants, Science Press, Beijing, pp. 786–824 (2002).Google Scholar
  7. 7.
    W. H. Wu. Plant Physiology, Science Press, Beijing, pp. 128–165, 105–108 (2003), (in Chinese).Google Scholar
  8. 8.
    L. N. Ji, J. J. Huang, and T. H. Mo, Bioinoganic Chemistry: Introduction, Zhongshan University Press, Guangzhou, pp. 119–149 (2001) (in Chinese).Google Scholar
  9. 9.
    P. Yang, and F. Gao. Bioinorganic Chemistry: Theory, Science Press, Beijing, pp. 186–189 (2002), (in Chinese).Google Scholar
  10. 10.
    C. M. Lu, C. Y. Zhang, J. Q. Wen, and G. R. Wu, Research of the effect of nanometer materials on germination and growth enhancement of Glycine Max and its mechanism, Soybean Sci. 21(3), 168–171 (2002) (in Chinese).Google Scholar
  11. 11.
    A. M. Limani, C. Rouillon, G. Glevarec, A. Gallais, and B. Hirel, Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase, Plant Physiol. 130(4), 1860–1870 (2002).CrossRefGoogle Scholar
  12. 12.
    H. M. Lam, K. T. Coschigano, and I. C. Oliverira, The molecular genetics of nitrogen assimilation into amino acids in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 569 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    C. M. Ribaudo, D. P. Rondanini, J. A. Gura, and A. A. Fraschina, Response of Zea mays to the inoculation with Azospirillum on nitrogen metabolism under greenhouse conditions, Biol. Plant 44(4), 631–634 (2001).CrossRefGoogle Scholar
  14. 14.
    Shanghai Plant Physiology Society ed., Experimental Guideof Modern Plant Physiology, Science Press, Beijing, pp. 154–156 (1999) (in Chinese).Google Scholar
  15. 15.
    D. I. Arnon, Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).PubMedCrossRefGoogle Scholar
  16. 16.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Fan Yang
    • 1
  • Fashui Hong
    • 1
  • Wenjuan You
    • 1
  • Chao Liu
    • 1
  • Fengqing Gao
    • 1
  • Cheng Wu
    • 1
  • Ping Yang
    • 2
  1. 1.College of Life SciencesSuzhou UniversitySuzhouPeople's Republic of China
  2. 2.College of Chemical and EngineeringSuzhou UniversitySuzhouPeople's Republic of China

Personalised recommendations