Biological Trace Element Research

, Volume 110, Issue 1, pp 1–17 | Cite as

Neurotoxicity of depleted uranium

Reasons for increased concern
  • George C. -T. Jiang
  • Michael Aschiner


Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be used in nuclear energy. Because DU is pyrophoric and a dense metal with unique features when combined in alloys, it is used by the military in armor and ammunitions. There has been significant public concern regarding the use of DU by such armed forces, and it has been hypothesized to play a role in Gulf War syndrome. In light of experimental evidence from cell cultures, rats, and humans, there is justification for such concern. However, there are limited data on the neurotoxicity of DU. This review reports on uranium uses and its published health effects, with a major focus on in vitro and in vivo studies that escalate concerns that exposure to DU might be associated with neurotoxic health sequelae.

Index Entries

Uranium depleted uranium neurotoxicity Gulf War syndrome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. H. Harley, E. C. Foulkes, L. H. Hilborne, A. Hudson, and C. R. Anthony, Depleted Uranium, RAND, Santa Monica, CA (1999).Google Scholar
  2. 2.
    I. M. Fisenne, P. M. Perry, K. M. Decker, and H. K. Keller, The daily intake of 234,235,238U, 228,230,232Th, and 226,228Ra by New York City residents, Health Phys. 53, 357–363 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    UNSCEAR—United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, Vol. I, United Nations, New York, p. 123 (2000).Google Scholar
  4. 4.
    UNSCEAR—United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, Vol. II, United Nations, New York, p. 346 (2000).Google Scholar
  5. 5.
    Z. Pietrzak-Flis, L. Rosiak, M. M. Suplinska, E. Chrzanowski, and S. Dembinska, Daily intakes of 238U, 234U, 232Th, 230Th, 228Th and 226Ra in the adult population of central Poland, Sci. Total Environ. 273(1–3), 163–169 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Bem, and F. Bou-Rabee, Environmental and health consequences of depleted uranium use in the 1991 Gulf War, Environ. Int. 30, 123–134 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    H. M. Hartmann, F. A. Monette, and I. H. Avci, Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds, Hum. Ecol. Risk Assess 6, 851–874 (2000).CrossRefGoogle Scholar
  8. 8.
    M. D. Sztajnkrycer and E. J. Otten, Chemical and radiological toxicity of depleted uranium, Mil. Med. 169(3), 212–216 (2004).PubMedGoogle Scholar
  9. 9.
    WHO—Department of Protection of the Human Environment, Depleted Uranium: Sources, Exposure and Health Effects, WHO, Geneva.Google Scholar
  10. 10.
    R. F. Mould, Depleted uranium and radiation-induced lung cancer and leukaemia, Br. J. Radiol. 74, 677–683 (2001).PubMedGoogle Scholar
  11. 11.
    I. M. Fisenne, P. M. Perry, and N. H. Harley, Uranium in humans, Rad. Prot. Dosim. 24, 127–131 (1988).Google Scholar
  12. 12.
    US DoD (Department of Defense), Depleted uranium in the Gulf. Environmental exposure report. Available from Scholar
  13. 13.
    M. A. McDiarmid, J. P. Keogh, F. J. Hooper, et al., Health effects of depleted uranium on exposed Gulf War veterans, Environ. Res. 82, 168–180 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    M. A. McDiarmid, Depleted uranium and public health, Br. Med. J. 322, 123–124, (2001).CrossRefGoogle Scholar
  15. 15.
    M. A. McDiarmid, S. M. Engelhardt, and M. Oliver, Urinary uranium concentrations in an enlarged Gulf War veteran cohort, Health Phys. 80(3), 270–273 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    M. A. McDiarmid, K. Squibb, S. Engelhardt, et al., Surveillance of depleted uranium exposed Gulf War veterans: health effects observed in an enlarged “friendly-fire” cohort, J. Occup. Envron. Med. 43, 991–1000 (2001).CrossRefGoogle Scholar
  17. 17.
    M. A. McDiarmid, K. Squibb, and S. M. Engelhardt, Biologic monitoring for urinary uranium in Gulf War I veterans, Health Phys. 87(1), 51–56 (2004a).PubMedCrossRefGoogle Scholar
  18. 18.
    H. S. Spencer, D. Osis, I. M. Fisenne, P. Perry, and N. H. Harley, Measured intake and excretion patterns of naturally occurring 238U and calcium in humans, Radiat. Res. 24, 90–95 (1990).CrossRefGoogle Scholar
  19. 19.
    R. H. Gwiazda, K. Squibb, M. McDiarmid, and D. Smith, Detection of depleted uranium in urine of veterans from the 1991 Gulf War, Health Phys. 86(1), 12–18 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    R. E. J. Mitchel and S. Sunder, Depleted uranium dust from fired munitions: physical, chemical and biological properties, Health Phys. 87(1), 57–67 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    P. R. Danesi, A. Bleise, W. Burkart, et al., Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo, J. Environ. Radioact. 64(2–3), 121–131 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    L. A. Di Lella, L. Frati, S. Loppi, G. Protano, and F. Riccobono, Environmental distribution of uranium and other trace elements at selected Kosovo sites, Chemosphere 56(9), 861–865 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    L. A. Di Lella, F. Nannoni, G. Protano, and F. Riccobono, Uranium contents and (235)U/(238)U atom ratios in soil and earthworms in western Kosovo after the 1999 war, Sci. Total Environ 337(1–3), 109–118 (2005).PubMedGoogle Scholar
  24. 24.
    B. Salbu, K. Janssens, O. C. Lind, K. Proost, L. Gijsels, and P. R. Danesi, Oxidation states of uranium in depleted uranium particles from Kuwait, J. Environ. Radioact. 78 (2), 125–135 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Ihrulj, A. Krunic-Haveric, S. Haveric, N. Pojskic, and R. Hadziselimovic, Micronuclei occurrence in population exposed to depleted uranium and control human group in correlation with sex, age and smoking habit, Med. Arh. 58(6), 335–338 (2004).Google Scholar
  26. 26.
    M. A. McDiarmid, S. Engelhardt, M. Oliver, et al., Surveillance of depleted uranium exposed Gulf War veterans: a 10-year follow-up, J. Toxicol. Envron. Health 67, 277–296 (2004).CrossRefGoogle Scholar
  27. 27.
    M. A. McDiarmid, F. J. Hooper, K. Squibb, et al. Health effects and biological monitoring results of Gulf War veterans exposed to depleted uranium, Mil Med. 167(2 Suppl.), 123–124 (2002).PubMedGoogle Scholar
  28. 28.
    H. C. Hodge, Handbook of Experimental Pharmacology: Uranium, Plutonium, Transplutonic Elements, H. C. Hodge, J. N. Stannard, and J. B. Hursh, eds., Springer-Verlag, New York, pp. 5–68 (1973).Google Scholar
  29. 29.
    D. R. Goodman, Nephrotoxicity: toxic effects in the kidneys, in Industrial Toxicology and Health Applications in the Workplace, P. L. Wilson and J. L. Bur[???]son, eds., Van Nostrand Reinhold, New York (1995).Google Scholar
  30. 30.
    M. Carrière, L. Avoscan, R. Collins, et al., Influence of uranium speciation on normal rat kidney (NRK-52E) proximal cell cytotoxicity, Chem. Res. Toxicol. 17, 446–452 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    B. L'Azou, M. H. Henge-Napoli, L. Minaro, H. Mirto, M. P. Barrouillet, and J. Cambar, Effects of cadmium and uranium on some in vitro renal targets, Cell. Biol. Toxicol. 18, 329–340 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    A. C. Miller, A. F. Fuciarelli, W. E. Jackson, et al., Urinuary and serum mutagenicity studies with rats implanted with depleted uranium or tantalum pellets, Mutagenesis 13(6), 643–648 (1998).PubMedCrossRefGoogle Scholar
  33. 33.
    A. C. Miller, W. F. Blakely, D. Livengood, et al., Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride, Environ. Health Perspect. 106(8), 465–471 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    A. C. Miller, K. Brooks, M. Stewart, et al., Genomic instability in human osteoblast cells after exposure to depleted uranium: delayed lethality and micronuclei formation, J. Environ. Radioact. 64(2–3), 247–259 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Durakovic, On depleted uranium: Gulf War and Balkan Syndrome, Croat. Med. J. 42(2), 130–134 (2001).PubMedGoogle Scholar
  36. 36.
    A. Durakovic, P. Horan, L. A. Dietz, and I. Zimmerman, Estimate of the time zero lung burden of depleted uranium in Persian Gulf War veterans by the 24-hour urinary excretion and exponential decay analysis, Mil. Med. 168(8), 600–605 (2003).PubMedGoogle Scholar
  37. 37.
    M. A. Kadhim, D. A. Macdonald, D. T. Goodhead, S. A. Lorimore, S. J. Marsden, and E. G. Wright, Transmission of chromosomal instability after plutonium alpha-particle irradiation, Nature 355(6362), 738–740 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    M. A. Kadhim, S. A. Lorimore, M. D. Hepburn, D. T. Goodhead, V. J. Buckle, and E. G. Wright, Alpha-particle-induced chromosomal instability in human bone marrow cells, Lancet 344(8928), 987–988 (1994).PubMedCrossRefGoogle Scholar
  39. 39.
    H. Schroder, A. Heimers, R. Frentzel-Beyme, A. Schott, and W. Hoffmann, Chromosome aberration analysis in peripheral lymphocytes of Gulf War and Balkans War veterans, Radiat. Prot. Dosim. 103(3), 211–219 (2003).Google Scholar
  40. 40.
    H. Nagasawa and J. B. Little, Induction of sister chromatid exchanges by extremely low doses of alpha-particles, Cancer Res. 52(22), 6394–6396 (1992).PubMedGoogle Scholar
  41. 41.
    A. C. Miller, S. Mog, L. McKinney, et al., Neoplastic transformation of human osteoblast cells to the tumorigenic phenotype by heavy metal-tungsten alloy particles: induction of genotoxic effects, Carcinogenesis 22(1), 115–125 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    A. C. Miller, J. Xu, M. Stewart, et al., Observation of radiation-specific damage in human cells exposed to depleted uranium: dicentric frequency and neoplastic transformation as endpoints, Radiat. Prot. Dosim. 99(1–4), 275–278 (2002).Google Scholar
  43. 43.
    A. C. Miller, K. Brooks, J. Smith, and N. Page, Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2), Mol. Cell Biochem. 255, 247–256 (2004).PubMedCrossRefGoogle Scholar
  44. 44.
    B. E. Lehnert, E. H. Goodwin, and A. Deshpande, Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells, Cancer Res. 57(11), 2164–2171; erratum 63(6), 1439 (1997).PubMedGoogle Scholar
  45. 45.
    C. H. Kennedy, C. E. Mitchell, N. H. Fukushima, R. E. Neft, and J. F. Lechner, Induction of genomic instability in normal human bronchial epithelial cells by 238Pu alpha-particles, Carcinogenesis 17(8), 1671–1676 (1996).PubMedCrossRefGoogle Scholar
  46. 46.
    R. H. Lin, L. J. Wu, C. H. Lee, and S. Y. Kin-Shiau, Cytogenetic toxicity of uranyl nitrate in Chinese hamster ovary cells, Mutat. Res. 319, 197–203 (1993).PubMedCrossRefGoogle Scholar
  47. 47.
    F. F. Hahn, R. A. Guilmette, and M. D. Hoover, Implanted depleted uranium fragments cause soft tissue sarcomas in the muscles of rats, Environ. Health Perspect. 110(1), 51–59 (2002).PubMedCrossRefGoogle Scholar
  48. 48.
    C. Voegtlin, and H. C. Hodge, eds., Pharmacology and Toxicology of Uranium Compounds, Part 1, McGraw-Hill, New York (1949).Google Scholar
  49. 49.
    C. Voegtlin and H. C. Hodge, eds., Pharmacology and Toxicology of Uranium Compounds Part 2. McGraw-Hill, New York (1949).Google Scholar
  50. 50.
    L. J. Leach, E. A. Maynard, H. C. Hodge, et al., A five-year inhalation study with natural uranium dioxide (UO 2) dust. I. Retention and biologic effect in the monkey, dog and rat, Health Phys. 18(6), 599–612 (1970).PubMedCrossRefGoogle Scholar
  51. 51.
    L. J. Leach, C. L. Yuile, H. C. Hodge, G. E. Sylvester, and H. B. wilson, A five-year inhalation study with natural uranium dioxide (UO2) dust. II. Postexposure retention and biologic effects in the monkey, dog and rat, Health Phys. 25(3), 239–258 (1973).PubMedCrossRefGoogle Scholar
  52. 52.
    P. Houpert, V. Chazel, F. Pauet, M. H. Henge-Napoli, and E. Ansoborlo, The effects of the initial lung deposit on uranium biokinetics after administration as UF4 and UO4, Int. J. Radiat. Biol. 75(3), 373–377 (1999).PubMedCrossRefGoogle Scholar
  53. 53.
    C. Voegtlin and H. C. Hodge, eds., Pharmacology and Toxicology of Uranium Compounds. Part 3. McGraw-Hill, New York (1953).Google Scholar
  54. 54.
    C. Voegtlin and H. C. Hodge, eds., Pharmacology and Toxicology of Uranium Compounds. Part 4. McGraw-Hill, New York (1953).Google Scholar
  55. 55.
    N. D. Priest, Toxicity of depleted uranium, Lancet 357, 244–246 (2001).PubMedCrossRefGoogle Scholar
  56. 56.
    J. L. Domingo, Reproductive and developmental toxicity of natural and depleted uranium: a review, Reprod. Toxicol. 14, 603–609 (2001).CrossRefGoogle Scholar
  57. 57.
    D. P. Arfsten, K. R. Still, and G. D. Ritchie, A review of the effects of uranium and depleted uranium exposure on reproduction and fetal development, Toxicol. Ind. Health. 17(5–10), 180–191 (2001).PubMedCrossRefGoogle Scholar
  58. 58.
    A. W. Abu-Qare and M. B. Abou-Donia, Depleted uranium—the growing concern, J. Appl. Toxicol. 22(3), 149–152 (2002).PubMedCrossRefGoogle Scholar
  59. 59.
    T. C. Pellmar, A. F. Fuciarelli, J. W. Ejnik, et al., Distribution of uranium in rats implanted with depleted uranium pellets, Toxicol. Sci. 49, 29–39 (1999).PubMedCrossRefGoogle Scholar
  60. 60.
    T. C. Pellmar, D. O. Keyser, C. Emery, and J. B. Hogan, Electrophysiological changes in hippocampal slices isolated from rats embedded with depleted uranium fragments, Neurotoxicology 20(5), 785–792 (1999).PubMedGoogle Scholar
  61. 61.
    W. Briner and J. Murray, Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats, Neurotoxicol. Teratol. 27(1), 135–144 (2005).PubMedCrossRefGoogle Scholar
  62. 62.
    D. S. Barber, M. F. Ehrich, and B. S. Jortner, The effect of stress on the temporal and regional distribution of uranium in rat brain after acute uranyl acetate exposure, J. Toxicol. Environ. Health A 68(2), 99–111 (2005).PubMedCrossRefGoogle Scholar
  63. 63.
    R. H. Lin, W. M. Fu, and S. Y. Lin-Shiau, Presynaptic action of uranyl nitrate on the phrenic nerve-diaphragm preparation of the mouse, Neuropharmacology 27(8), 857–863 (1988).PubMedCrossRefGoogle Scholar
  64. 64.
    A. P. Gilman, D. C. Villeneuve, V. E. Secours, et al., Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague-Dawley rat, Toxicol. Sci. 41(1), 117–128 (1998).PubMedGoogle Scholar
  65. 65.
    A. P. Gilman, D. C. Villeneuve, V. E. Secours, et al., Uranyl nitrate: 91-day toxicity studies in the New Zealand white rabbit, Toxicol. Sci. 41(1), 129–137 (1998).PubMedCrossRefGoogle Scholar
  66. 66.
    A. P. Gilman, M. A. Moss, D. C. Villeuneuve, et al., Uranyl nitrate: 91-day exposure and recovery studies in the male New Zealand white rabbit, Toxicol. Sci. 41(1), 138–151 (1998).PubMedCrossRefGoogle Scholar
  67. 67.
    V. Lemercier, X. Millot, E. Ansoborlo, et al., Study of uranium transfer across the blood-brain barrier. Radiat. Prot. Dosim. 105(1–4), 243–245 (2003).Google Scholar
  68. 68.
    M. B. Abou-Donia, A. M. Dechkovskaia, L. B. Goldstein, D. U. Shah, S. L. Bullman, and W. A. Khan, Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats, Pharmacol. Biochem. Behav. 72, 881–890 (2002).PubMedCrossRefGoogle Scholar
  69. 69.
    US Department of Defense, Population representation in the military services, fiscal year 2000. Available from (2000).Google Scholar
  70. 70.
    F. J. Hooper, K. S. Squibb, E. L. Siegel, K. McPhaul, and J. P. Keogh, Elevated urine uranium excretion by soldiers with retained uranium shrapnel, Health Phys. 77(5), 512–519 (1999).PubMedCrossRefGoogle Scholar
  71. 71.
    International Commission on Radiological Protection, Report of the Task Groups on References Man. 23, Pergamon Elmsford, NY (1974).Google Scholar
  72. 72.
    A. Durakovic, Undiagnosed illnesses and radioactive warfare, Croat. Med. J. 44(5), 520–532 (2003).PubMedGoogle Scholar
  73. 73.
    US DoD (Department of Defense), Depleted uranium in the Gulf. Environmental exposure report. Available from (1998).Google Scholar
  74. 74.
    US DoD (Department of Defense), Depleted uranium in the Gulf. Environmental exposure report. Available from (2000).Google Scholar
  75. 75.
    The Royal Society, The Health Effects of Depleted Uranium Munitions. Part I. The Royal Society, London (2001).Google Scholar
  76. 76.
    The Royal Society, The Health Effects of Depleted Uranium Munitions. Part II. The Royal Society, London (2002).Google Scholar
  77. 77.
    The Royal Society, The Health Effects of Depleted Uranium Munitions. Summary. Document 6/62, The Royal Society, London (2002).Google Scholar
  78. 78.
    E. Weir, Uranium in drinking water, naturally, C. M. A. J. 170(6), 951–952 (2004).Google Scholar
  79. 79.
    A. C. Miller, M. Stewart, K. Brooks, L. Shi, and N. Page, Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay, J. Inorg. Biochem. 91, 246–252 (2002).PubMedCrossRefGoogle Scholar
  80. 80.
    M. Yazzie, S. L. Gamble, E. R. Civitello, and D. M. Stearns, Uranyl acetate causes DNA single-strand breaks in vitro in the presence of ascorbate (vitamin C), Chem. Res. Toxicol. 16(4), 524–530 (2003).PubMedCrossRefGoogle Scholar
  81. 81.
    M. Taulan, F. Paquet, C. Maubert, O. Delissen, J. Demaille, and M. C. Romey, Renal toxicogenomic response to chronic uranyl nitrate insult in mice, Environ. Health Perspect. 112(16), 1628–1635 (2004).PubMedGoogle Scholar
  82. 82.
    O. Prat, F. Berenguer, V. Malard, et al., Transcriptomic and proteomic responses of human renal HEK293 cells to uranium toxicity, Proteomics 5(1), 297–306 (2005).PubMedCrossRefGoogle Scholar
  83. 83.
    R. Furuya, H. Kumagai, and A. Hishida, Acquired resistance to rechallenge injury with uranyl acetate in LLC-PK1 cells, J. Lab. Clin. Med. 129(3), 347–355 (1997).PubMedCrossRefGoogle Scholar
  84. 84.
    S. Mizuno, K. Fujita, R. Furuy, et al., Association of HSP73 with the acquired resistance to uranyl acetate-induced acute renal failure, Toxicology 117(2–3), 183–191 (1997).PubMedCrossRefGoogle Scholar
  85. 85.
    J. K. Tolson, S. M. Roberts, B. Jortner, M. Pomeroy, and D. S. Barber, Heat shock proteins and acquired resistance to uranium nephrotoxicity, Toxicology 206(1) 59–73 (2005).PubMedCrossRefGoogle Scholar
  86. 86.
    J. F. Kalinich, N. Ramakrishnan, V. Villa, and D. E. McClain, Depleted uranium-uranyl chloride induces apoptosis in mouse J774 macrophages, Toxocology 79, 105–114 (2002).CrossRefGoogle Scholar
  87. 87.
    D. Fahey, Science or science fiction? Facts, myths, and propaganda in the debate over depleted uranium weapons. Available from (2003)Google Scholar
  88. 88.
    S. Milacic, D. Petrovic, D. Jovicic, R. Kovacevic, and J. Simic, Examination of the health status of populations from depleted-uranium-contaminated regions, Environ. Res. 95(1), 2–10 (2004).PubMedCrossRefGoogle Scholar
  89. 89.
    N. Obralic, F. Gavrankapetanovic, Z. Dizdarevic, et al., The number of malignant neoplasm in Sarajevo region during the period 1998–2002, Med. Arh. 58(5), 275–278 (2004).PubMedGoogle Scholar
  90. 90.
    Z. Karpas, L. Halicz, J. Roiz, et al., Inductively coupled plasma mass spectrometry as a simple, rapid, and inexpensive method for determination of uranium in urine and fresh water: comparison with LIF. Health Phys. 71(6), 879–885 (1996).PubMedCrossRefGoogle Scholar
  91. 91.
    J. W. Ejnik, A. J. Carmichael, M. M. Hamilton, et al., Determination of the isotopic composition of uranium in urine by inductively coupled plasma mass spectrometry, Health Phys. 78(2), 143–146 (2000).PubMedCrossRefGoogle Scholar
  92. 92.
    A. Ortega, J. L. Domingo, J. M. Llobet, J. M. Tomas, and J. L. Paternain. Evaluation of the oral toxicity of uranium in a 4-week drinking-water study in rats, Bull. Environ. Contam. Toxicol. 42(6), 935–941.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • George C. -T. Jiang
    • 1
  • Michael Aschiner
    • 2
  1. 1.Department of Physiology and Pharmacology, Wake ForestUniversity School of MedicineWinston-Salem
  2. 2.Department of PediatricsVanderbilt UniversityNasville

Personalised recommendations