Biological Trace Element Research

, Volume 109, Issue 3, pp 231–254

Unique ayurvedic metallic-herbal preparations, chemical characterization

  • A. Kumar
  • A. G. C. Nair
  • A. V. R. Reddy
  • A. N. Garg
Bhasmas

Abstract

Bhasmas are unique Ayurvedic metallic preparations with herbal juices/fruits, known in the Indian subcontinent since the seventh century BC and widely recommended for treatment of a variety of chronic ailments. Twenty bhasmas based on calcium, iron, zinc, mercury, silver, potassium, arsenic, copper, tin, and gemstones were analyzed for up to 18 elements by instrumental neutron activation analysis, including their C, H, N, and S contents. In addition to the major constituent element found at % level, several other essential elements such as Na, K, Ca, Mg, V, Mn, Fe, Cu, and Zn have also been found in μg/g amounts and ultratrace (ng/g) amounts of Au and Co. These seem to remain chelated with organic ligands derived from medicinal herbs. The bhasmas are biologically produced nanoparticles and are taken along with milk, butter, honey, or ghee (a preparation from milk), thus, this makes these elements easily assimilable, eliminating their harmful effects and enhancing their biocompatibility. Siddha Makaradhwaja, a mercury preparation is found to be stoichiometrically HgS without any traces of any other element. Similarly, Swet Parpati is stoichiometrically KNO3 but is found to have Mn, Cu, Zn, Na, P, and Cl as well. An attempt has been made to correlate the metallic contents with their medicinal importance. Na and K, the two electrolytic elements, seem to be well correlated, although K/Na varies in a wide range from 0.06 to 95, with specifically low values for Ca-, Fe-, and Zn-based hasmas. K/P also varies in a wide range from 0.23 to 12, although for most bhasmas (n=12)., it is 2.3±1.2. Further, Fe/Mn is linearly correlated (r=0.96) with Fe in nine noniron bhasmas.

Index Entries

Bhasmas Ayurvedic metallic-herbal preparation trace elements instrumental neutron activation analysis bioavailability interelemental correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Prakash, Use of metals in Ayurvedic medicine, Indian J. History Sci. 32, 1–27 (1997).Google Scholar
  2. 2.
    S. S. Savrikar, Use of metallic/mineral medicinal preparations in the management of disease, in Proc. Seminar on Metals in Medicine; Ayurvedic and Modern View, pp. 16–18 (2004).Google Scholar
  3. 3.
    N. G. Patel, Ayurveda: the traditional medicine of India, in Folk Medicine; The Art and the Science, R. P. Steiner, ed., American Chemical Society, Washington, DC, pp. 41–65 (1986).Google Scholar
  4. 4.
    K. N. Shastry, Rasatarangini, English translation of original in Sanskrit by Sadananda, 11 th ed., Motilal Banarsi Das, Varanasi (1979).Google Scholar
  5. 5.
    R. E. Suoboda, Prakriti; Your Ayurvedic Constitution, 2nd ed., Sadhana Publications, Bellingham, WA, pp. 169–174 (1998).Google Scholar
  6. 6.
    S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA (1994).Google Scholar
  7. 7.
    J. J. R. Frausto Da Silva and R. J. P. Williams, The Biological Chemistry of the Elements, The Inorganic Chemistry of Life, 2nd ed., Oxford University Press, New York (2001).Google Scholar
  8. 8.
    B. L. O'Dell and R. A. Sunde (eds.), Handbook of Nutritionally Essential Mineral Elements, Marcel Dekker, New York (1997).Google Scholar
  9. 9.
    A. S. Prasad, Essential and Toxic Elements in Human Health and Disease: An Update, Wiley-Liss, New York (1993).Google Scholar
  10. 10.
    A. E. Mohamed, M. N. Rashed and A. Mufty, Assessment of essential and toxic elements in some kinds of vegetables, Ecol. Environ. Safety 55, 251–260 (2003).CrossRefGoogle Scholar
  11. 11.
    V. Lad, The Complete Book of Ayurvedic Home Remedies, Three Rivers Press New York (1998).Google Scholar
  12. 12.
    A. Mitra, S. Chakraborty, B. Auddy, et al., Evaluation of chemical constituents and free-radical scavenging activity of Swarnabhasma (gold ash), an Ayurvedic drug, J. Ethnopharmacol. 80, 147–153 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    S. B. Vohora, H. S. Kim, S. A. Shah, T. Khanna and P. C. Dandiya, CNS and adaptogenic effects of Siddh Makaradhwaja: an Ayurvedic mercury preparation, in Trace and Toxic Elements in Nutrition and Health, M. Abdulla, S. B. Vohora, and M. Athar, eds., Wiley Eastern Ltd., New Delhi, pp. 73–80 (1993).Google Scholar
  14. 14.
    D. Frawlay, Ayurvedic Healing, a Comprehensive Guide, Lotus, Twin Lakes, AL, USA (2000).Google Scholar
  15. 15.
    E. M. N. Hamilton, E. N. Whitney, and F. S. Sizer Nutrition: Concepts and Controversies, 4th ed., West, St Paul, MN (1994).Google Scholar
  16. 16.
    E. Merian, Metals and Their Compounds in the Environments; Occurrence, Analysis and Biological Relevance, VCH, Weinheim (1991).Google Scholar
  17. 17.
    R. N. Chopra, S. Ghosh, and A. T. Dutt, Some Inorganic preparations of Indian indigenous medicines. I. Abhra bhasma, Indian J. Med. Res. 22, 285–288 (1934); II. Banga bhasma (calcined tin), Indian J. Med. Res. 24, 257–259 (1936); III. Lauha bhasma (calcined iron), Indian J. Med. Res. 24, 517–520 (1936); IV. raupya bhasma (reduced silver), Indian J. Med. Res. 24, 1137–1139 (1937); V. Swarna bhasma (reduced gold) and gold kusth, Indian J. Med. Res. 24, 1141–1144 (1937).Google Scholar
  18. 18.
    S. Vasanth, R. B. Bharathi, K. K. Purushothaman, and V. Narayanaswami, Chemical analysis of Talaka bhasma, J. Res. Indian Med. 5, 237–241 (1971); Analytical studies of Naga bhasma, J. Res. Indian Med. 6, 173–177 (1971).Google Scholar
  19. 19.
    R. Dixit and G. C. Shivahare, Synthetic and analytical studies on pearl bhasma, J. Indian Chem. Soc. 65, 747–748 (1988).Google Scholar
  20. 20.
    R. Dixit and G. C. Shivahare, Synthetic and analytical studies on Cowrie bhasma (Ayurvedic). J. Inst. Chem. 60, 185–187 (1988).Google Scholar
  21. 21.
    J. K. Lalla, P. D. Hamrapurkar, P. G. Patil, and H. M. Mamania, Preparation, characterization and analysis of Shankha bhasma, Indian Drugs 39, 152–157 (2002).Google Scholar
  22. 22.
    R. R. Garg, M. L. Garg, F. Hennrich, et al., PIXE analysis of some Ayurvedic medicines, Indian J. Phys. 67B, 581–587 (1993).Google Scholar
  23. 23.
    S. M. Sondhi and G. K. Janani, Determination of mineral elements in some Ayurvedic bhasmas used for the cure of various ailments, Indian Drugs 32, 125–128 (1995).Google Scholar
  24. 24.
    S. M. Sondhi, V. K. Sharma, and R. P. Verma, Analysis of some Ayurvedic bhasmas, Indian Drugs 33, 67–70 (1996).Google Scholar
  25. 25.
    S. Pandit, T. K. Biswas, P. K. Debnath, et al., Chemical and pharmacological evaluation of different Ayurvedic preparations of iron. J. Ethnopharmacol. 65, 149–156 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    L. V. Krishnamurthy and R. T. Sane, Study on Ayurvedic bhasmas on the basis of modern analytical instrumentation techniques. Indian Res. J. Chem. Environ. 5, 65–67 (2001).Google Scholar
  27. 27.
    Z. B. Alfassi, Instrumental Multi-Element Chemical Analysis. Kluwer Academic, Dordrect (1998).Google Scholar
  28. 28.
    Pharmacopoeial Standards for Ayurvedic Formulations, Central Council for Research in Ayurveda and Siddha, Government of India, New Delhi (1997).Google Scholar
  29. 29.
    V. V. S. Ramakrishna, R. N. Acharya, A. V. R. Reddy and A. N. Garg, Use of gold as monostandard for the determination of elemental concentrations in environmental SRMs and Ganga river sediments by the k 0 method, Appl. Radiat. Isot. 55, 595–602 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    T. Balaji, R. N. Acharya, A. G. C. Nair, et al., Determination of essential elements in Ayurvedic medicinal leaves by k 0 standardisation INAA, J. Radioanal. Nucl. Chem. 243, 783–788 (2000).CrossRefGoogle Scholar
  31. 31.
    R. G. Weginwar, D. L. Samudralwar and A. N. Garg, Determination of phosphorus in biological samples by thermal neutron activation followed by β- counting. J. Radioanal. Nucl. Chem. 133, 317–324 (1989).CrossRefGoogle Scholar
  32. 32.
    J. Kim and C. Vipulanadan, Effect of pH on EDTA method of measuring calcium. Available from; http://gem1.cive.uh.edu/content/conf_exhib/99_poster/4.htm.Google Scholar
  33. 33.
    R. Dybcznski, B. Danko, K. Kulisa, et al., Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nucl. Chem. 259, 409–413 (2004).CrossRefGoogle Scholar
  34. 34.
    M. J. Campbell, Z. Radeecki, A. Trinkl and K. I. Burns, Report on the Intercomparison Runs for the Determination of Trace and Minor Elements in Cabbage Material, IAEA, Vienna (2000).Google Scholar
  35. 35.
    Certificate of Analysis, Standard Reference Material 1547, Peach Leaves, National Institute of Standards & Technology, Washington, DC (1993).Google Scholar
  36. 36.
    P. N. Reddy, M. Lakshmana and U. V. Udapa, Effect of Praval bhasma (Coral calx), a natural source of rich calcium on bone mineralization in rats, Pharmacol. Res. 48, 539–599 (2003).CrossRefGoogle Scholar
  37. 37.
    A. J. Baxi and S. A. Vasavada, Antacid activity of some Ayurvedic calcium preparations, Indian J. Pharmacy 27, 227–230 (1965).Google Scholar
  38. 38.
    M. Kulkarni, J. Y. Deopujari and H. J. Purohit, Synergistic effect of Ayurvedic pearl preparation on enhancing effective ness of antibiotics, India J. Exp. Biol. 40, 831–834 (2002).Google Scholar
  39. 39.
    D. B. Motlag and M. C. Nath, Feeding trials with ancient calcium preparations of Indian indigenous system, Indian J. Med. Res. 46, 616–625 (1958).PubMedGoogle Scholar
  40. 40.
    S. Pandit, T. K. Sur, U. Jana, D. Bhattacharya and P. K. Debnath, Anti-ulcer effect of Shankh bhasma in rats: a preliminary study, Indian J. Pharmacol. 32, 378–380 (2000).Google Scholar
  41. 41.
    G. E. Dallal, B. Dawson-Hughes, E. A. Krall, I. Sadowski, N. Sahyoun and S. A. Tannen, Controlled trial of the effect of calcium supplementation on bone density in postmenopausal women, N. Engl. J. Med 323, 878–883 (1990).PubMedCrossRefGoogle Scholar
  42. 42.
    O. Chauhan, J. L. Godhwani, N. K. Khanna and V. K. Pendse, Anti-inflammatory activity of Muktashukti bhasma, Indian J. Exp. Biol. 36, 985–989 (1998).PubMedGoogle Scholar
  43. 43.
    A. Kanase, S. Patil and B. Thorat, Curative effects of Mandoor bhasma on liver and kidney of albino rats after induction of acute hepatitis by CCl4. Indian J. Exp. Biol. 35, 754–764 (1997).PubMedGoogle Scholar
  44. 44.
    B. P. Reddy, C. K. Kokate, D. Rambahau, V. Venkateswarlu and V. N. Murthy, Antihepatotoxic activity of some Ayurvedic preparations, Indian J. Pharm. Sci. 55, 137–140 (1993).Google Scholar
  45. 45.
    J. P. Jani, C. V. Raiyani, J. S. Mistry and S. K. Kashyap, Polycyclic aromatic hydrocarbonsin traditional medicinal preparations, Hum. Exp. Toxicol. 10, 347–350 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    R. D. Mahatyagi (Australia), Personal communication (2004).Google Scholar
  47. 47.
    R. L. Khosa and S. N. Dixit, Ayurvedic zinc preparation (Jasad bhasma), J. Res. Indian Med. 6, 222–225 (1971).Google Scholar
  48. 48.
    R. N. Puri, V. Thakur and H. V. Neema.. Role of zinc (Yashad bhasma) in arrest of myopia, Indian J. Ophthalmol. 31 (Suppl), 816–822 (1983).PubMedGoogle Scholar
  49. 49.
    WHO, Mercury environmental aspects, Environmental Health Criteria, 86, World Health Organization, Geneva (1989).Google Scholar
  50. 50.
    M. N. Pal, Role of mercury in Ayurvedic drugs, in Proceedings of the First International Conference on Elements in Health and Disease, R. B. Arora, S. B. Vohora, and M. S. Y. Khan, eds., WHO and Institute of History of Medicine and Medical Research, New Delhi, p. 269 (1984).Google Scholar
  51. 51.
    S. Subramanian, A. Maral, A. Mukherjee, et al., Nuclear and Radiochemistry Symposium (NUCAR 2003), p. 487 (2003).Google Scholar
  52. 52.
    S. S. Dombre, Toxicity study on Rasoushadhis with special reference to Makaradhwaja and Rajat bhasma, Proc. Seminar Metals in Medicine; Ayurvedic and Modern View p. 30 (2004).Google Scholar
  53. 53.
    A. Nadeem, T. Khanna, and S. B. Vohora, Silver preparations used in Indian system of medicine: neuropsychobehavioural effects, Indian J. Pharmacol. 31, 214–221 (1999); A. Nadeem, S. Bajaj, D. Vohora, and S. B. Vohora, Effect of calcinated gold and silver preparations on experimental models of epilepsy, Indian J. Toxicol. 7, 11–17 (2000).Google Scholar
  54. 54.
    R. Siddiqui, D. Vohora and S. B. Vohora, Proconvulsant effects of calcined arsenic preparations used in Unani medicine, Indian J. Pharmacol. 31, 150–152 (1999); R. Siddiqui and S. B. Vohora, Analgesic activity of arsenic preparations used in Unani-Tibb, Indian Drugs 37, 274–279 (2000).Google Scholar
  55. 55.
    S. D. Kahalekar, Tamra bhasma induces superoxide dismutase, Proc. Seminar Metals in Medicine; Ayurvedic and Modern View p. 65 (2004).Google Scholar
  56. 56.
    Y. B. Tripathi and V. P. Singh, Role of Tamra bhasma, an Ayurvedic preparation in the management of lipid peroxidation in liver of albino rats, Indian J. Exp. Biol. 34, 66–70 (1996).PubMedGoogle Scholar
  57. 57.
    I. C. Smith, B. L. Carson and F. Hoffmeister, Indium, an, Appraisal of Environmental Exposure, Ann Arbor Science, Ann Arbor, MI (1978).Google Scholar
  58. 58.
    M. J. Latorre, R. Pena, S. Garcia and C. Herrero, Authetification of Galician (N. W. Spain) honeys by multivariate techniques based on metal content data, Analyst 125, 307–312 (2000).CrossRefGoogle Scholar
  59. 59.
    N. G. Patel and P. K. Dixit, Insulin-like activity in larval foods of the honeybee,, Nature 202, 189–190 (1964).PubMedCrossRefGoogle Scholar
  60. 60.
    K. Chan, Some aspects of toxic contaminants in herbal medicines, Chemosphere 52, 1361–1371 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • A. Kumar
    • 1
  • A. G. C. Nair
    • 2
  • A. V. R. Reddy
    • 2
  • A. N. Garg
    • 1
  1. 1.Department of Chemistry, Indian Institute of TechnologyRoorkeeIndia
  2. 2.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations