Biological Trace Element Research

, Volume 109, Issue 3, pp 215–230

Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus

  • Jaroslav Racek
  • Ladislav Trefil
  • Daniel Rajdl
  • Vlasta Mudrova
  • Douglas Hunter
  • Václav Senft
Article

Abstract

The aim of this study was to determine the effect of chromium (Cr)-enriched yeast on blood glucose and insulin variables, blood lipids, and blood markers of oxidative stress in persons with type 2 diabetes mellitus (median duration: 3.0 yr). Thirty-six subjects (9 men, 27 women; mean age: 61.3 yr; mean body mass index: 34.33 kg/m2) were supplemented with 400 μg Cr/d as Cr-enriched yeast (n=19) or placebo (n=17) for 12 wk in a randomized, double-blind study. The most interesting results were obtained by comparison of the change in the placebo group to the change in the Cr group. The Cr group showed a significantly greater increase in serum Cr compared to the placebo group (p<0.05). Supplementation with Cr-enriched yeast was associated with a significant decrease in fasting serum glucose compared to placebo (p<0.01). Blood markers of oxidative stress glutathione peroxidase activity and levels of reduced glutathione were essentially unchanged in the Cr group after 12 wk, but decreased significantly in the placebo group (p<0.05, p<0.01, respectively), Serum HbA1c and glycated protein (fructosamine) were essentially unchanged in the Cr group, whereas HbA1c tended to increase in the placebo group (from 6.94% to 7.11%). Fasting serum insulin decreased in both groups, with a greater tendency in the Cr group (−16.5% vs −9.5%). These data suggest that supplementation of well-controlled type 2 diabetics with Cr-enriched yeast is safe and can result in improvements in blood glucose variables and oxidative stress.

Index Entries

Chromium diabetes mellitus glycated hemoglobin insulin oxidative stress yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Schwarz and W. Mertz, Chromium (III) and the glucose tolerance factor, Arch. Biochem. Biophys. 85, 292–295 (1959).PubMedCrossRefGoogle Scholar
  2. 2.
    I. W. Davidson and W. L. Blackwell, Changes in carbohydrate metabolism of squirrel monkeys with Chromium dietary supplementation, Proc. Soc. Exp. Biol. Med. 127, 66–70 (1968).PubMedGoogle Scholar
  3. 3.
    K. N. Jeejeebhoy, R. C. Chu, E. B. Marliss, G. R. Greenberg, and A. Bruce-Robertson, Chromium deficiency, glucose intolerance, and neuropathy reversed by Chromium supplementation, in a patient receiving long-term total parenteral nutrition, Am. J. Clin. Nutr. 30, 531–538 (1977).PubMedGoogle Scholar
  4. 4.
    R. A. Anderson, N. Cheng, N. A. Bryden, et al., Elevated intakes of supplemental Chromium improve glucose and insulin variables in individuals with type 2 diabetes, Diabetes 46, 1786–1791 (1997).PubMedGoogle Scholar
  5. 5.
    C. M. Davis and J. B. Vincent, Chromium oligopeptide activates insulin receptor tyrosine kinase activity, Biochemistry 36, 4382–4385 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    J. B. Vincent Elucidating a biological role for Chromium at a molecular level, Acc. Chem. Res. 33, 503–510 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    J. B. Vincent, Recent advances in the nutritional biochemistry of trivalent Chromium, Proc. Nutr. Soc. 63, 41–47 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    J. B. Vincent, Recent developments in the biochemistry of Chromium(III), Biol. Trace Element Res. 99, 1–16 (2004).CrossRefGoogle Scholar
  9. 9.
    M. H. Mendler, B. Turlin, R. Moirand, et al., Insulin resistance-associated hepatic iron overload, Gastroenterology, 117, 1155–1163 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Ding, Z. Chai, P. Duan, W. Feng, and Q. Qian, Serum and urine Cr concentrations in elderly diabetics, Biol. Trace Element Res. 63, 231–237 (1998).Google Scholar
  11. 11.
    B. W. Morris, S. MacNeil, C. A. Hardisty, S. Heller, C. Burgin, and T. A. Gray, Chromium homeostasis in patients with type II (NIDDM) diabetes, J. Trace Elements Med. Biol. 13, 57–61 (1999).Google Scholar
  12. 12.
    G. J. Ryan, N. S. Wanko, A. R. Redman, and C. B. Cook, Chromium as adjunctive treatment for type 2 diabetes, Ann. Pharmacother. 37, 876–885 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    S. M. Bahijiri, S. A. Mira, A. M. Mufti, and M. A. Ajabnoor, The effects of inorganic chromium and brewer's yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes, Saudi Med. J. 21, 831–837 (2000).PubMedGoogle Scholar
  14. 14.
    M. I. Uusitupa, L. Mykkanen, O. Siitonen, et al., Chromium supplementation in impaired glucose tolerance of elderly: effects on blood glucose, plasma insulin, C-peptide and lipid levels, Br. J. Nutr. 68, 209–216 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    N. A. Lee and C. A. Reasner, Beneficial effect of chromium supplementation on serum triglyceride levels in NIDDM, Diabetes Care 17, 1449–1452 (1994).PubMedGoogle Scholar
  16. 16.
    R. A. Anderson, A. M. Roussel, N. Zouari, S. Mahjoub, J. M. Matheau, and A. Kerkeni, Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus, J. Am. Coll. Nutr. 20, 212–218 (2001).PubMedGoogle Scholar
  17. 17.
    E. G. Offenbacher and F. X. Pi-Sunyer, Beneficial effect of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects, Diabetes 29, 919–925 (1980).PubMedGoogle Scholar
  18. 18.
    R. T. Mossop, Effects of chromium III on fasting blood glucose, cholesterol and cholesterol HDL levels in diabetics, Central Afr. J. Med. 29, 80–82 (1983).Google Scholar
  19. 19.
    C. D. Hunt and B. J. Stoecker, Deliberations and evaluations of the approaches, endpoints and paradigms for boron, chromium and fluoride dietary recommendations, J. Nutr. 126, 2441S-2451S (1996).PubMedGoogle Scholar
  20. 20.
    M. D. Althuis, N. E. Jordan, E. A. Ludington, and J. T. Wittes, Glucose and insulin responses to dietary chromium supplements: a meta-analysis, Am. J. Clin. Nutr. 76, 148–155 (2002).PubMedGoogle Scholar
  21. 21.
    J. K. Speetjens, R. A. Collins, J. B. Vincent, and S. A. Woski, The nutritional supplement chromium (III) tris(picolinate) cleaves DNA, Chem. Res. Toxicol 12, 483–487 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    N. F. Wiernsperger, Oxidative stress: the special case of diabetes, Biofactors 19, 11–18 (2003).PubMedGoogle Scholar
  23. 23.
    D. Giugliano, A. Ceriello, and G. Paolisso, Oxidative stress and diabetic vascular complications, Diabetes Care 19, 257–267 (1996).PubMedGoogle Scholar
  24. 24.
    A. M. Jentzsch, H. Bachmann, P. Furst, and H. K. Biesalski, Improved analysis of malondialdehyde in human body fluids, Free Radical Biol. Med. 20, 251–256 (1996).CrossRefGoogle Scholar
  25. 25.
    P. Chappuis, J. Poupon, J. F. Deschamps, P. J. Guillausseau, and F. Rousselet, Physiological chromium determination in serum by Zeeman graphite furnace atomic absorption spectrometry. A serious challenge, Biol. Trace Element Res. 32, 85–91 (1992).Google Scholar
  26. 26.
    B. D. Milne, Trace elements, in Tietz Fundamentals of Clinical Chemistry C. Burtis and E. Ashwood, eds., W. B. Saunders, Philadelphia, pp. 568–583 (2001).Google Scholar
  27. 27.
    N. Cheng, X. Zhu, H. Shi, et al., Follow-up survey of people in China with type 2 diabetes mellitus consuming supplemental chromium, J. Trace Elements Exp. Med. 12, 55–60 (1999).CrossRefGoogle Scholar
  28. 28.
    S. M. A. Bahijri and A. M. B. Mufti, Beneficial effects of chromium in people with type 2 diabetes, and urinary chromium response to glucose load as a possible indicator of status, Biol. Trace Element Res. 85, 97–109 (2002).CrossRefGoogle Scholar
  29. 29.
    M. Rukgauer and A. Zeyfang, Chromium determinations in blood cells: clinical relevance demonstrated in patients with diabetes mellitus type 2, Biol. Trace Element Res. 86, 193–202 (2002).CrossRefGoogle Scholar
  30. 30.
    A. S. Kozlovsky, P. B. Moser, S. Reiser, and R. A. Anderson, Effects of diets high in simple sugars on urinary chromium losses, Metabolism 35, 515–518 (1986).PubMedCrossRefGoogle Scholar
  31. 31.
    N. Cheng, X. Zhu, H. Shi, W. Wu, J. Chi, and J. Cheng, R. Anderson, Follow-up survey of people in China with type 2 diabetes mellitus consuming supplemental chromium, Biol. Trace Elements Exp. Med. 12, 55–60 (1999).CrossRefGoogle Scholar
  32. 32.
    R. Riales and M. J. Albrink, Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men, Am. J. Clin. Nutr. 34, 2670–2678 (1981).PubMedGoogle Scholar
  33. 33.
    V. L. Thomas and S. S. Gropper, Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors, Biol. Trace Element Res. 55, 297–305 (1996).Google Scholar
  34. 34.
    L. G. Trow, J. Lewis, R. H. Greenwood, et al., Lack of effect of dietary chromium supplementation on glucose tolerance, plasma insulin and lipoprotein levels in patients with type 2 diabetes, Int. J. Vitam. Nutr. Res. 70, 14–18 (2000).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Cheng, M. Lai, W. Hou, and C. Huang, Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects, J. Agric. Food Chem. 52, 1385–1389 (2004).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Jaroslav Racek
    • 1
  • Ladislav Trefil
    • 1
  • Daniel Rajdl
    • 1
  • Vlasta Mudrova
    • 2
  • Douglas Hunter
    • 3
  • Václav Senft
    • 1
  1. 1.Institute of Clinical Biochemistry and HematologyCharles University, Medical Faculty in PilsenCzech Republic
  2. 2.Dieko, s.r.oPilsenCzech Republic
  3. 3.Pharma NordVejleDenmark

Personalised recommendations