Biological Trace Element Research

, Volume 109, Issue 2, pp 173–179

Microarray analysis of selenium-depleted and selenium-supplemented mice

  • L. A. Hooven
  • J. Butler
  • L. W. Ream
  • P. D. Whanger
Article

Abstract

Nutritional selenium deficiency is associated with Keshan disease in humans and white muscle disease in ruminant livestock. In this study, mice were fed a selenium-deficient diet for three generations. Female mice from the third depleted generation of these mice were given water containing either no added selenium or 0.1 or 1.0 ppm selenium as sodium selenate; DNA microarrays were used to compare gene expression in the muscle from mice fed the selenium diets to that from mice remaining on the depleted diet. The most prominent expression increases were observed with Ptger2 (a prostaglandin E receptor), Tcrb-V13 (a T-cell receptor beta), Tcf-7 (a T-cell transcription factor), and Lck (lymphocyte protein tyrosine kinase), and the major consistent decrease was Vav2, an oncogene in mice consuming the selenium containing diets.

Index Entries

Selenium mice muscle immune DNA microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Combs, Jr., L. C. Clark, and B. W. Turnbull, An analysis of cancer prevention by selenium, Biofactors 14, 153–159 (2001).PubMedGoogle Scholar
  2. 2.
    U. Schweizer, L. Schomburg, and N. E. Savaskan, The neurobiology of selenium: lessons from transgenic mice, J. Nutr. 134, 707–710 (2004).PubMedGoogle Scholar
  3. 3.
    F. J. Martin-Romero, G. V. Kryukov, A. V. Lobanov, et al., Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality, J. Biol. Chem. 276, 29,798–29,804 (2001).CrossRefGoogle Scholar
  4. 4.
    J. R. Arthur, R. C. McKenzie, and G. J. Beckett, Selenium in the immune system, J. Nutr. 133, 1457S-1459S (2003).PubMedGoogle Scholar
  5. 5.
    P. Chariot and O. Bignani, Skeletal muscle disorders associated with selenium deficiency in humans, Muscle Nerve 27, 662–668 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    K. M. Brown and J. R. Arthur, Selenium, selenoproteins and human health: a review. Public Health Nutr. 4, 593–599 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    J. R. Schubert, O. H. Muth, J. E. Oldfield, and L. F. Remmert, Experimental results with selenium in white muscle disease of lambs and calves. Fed. Proc. 20, 689–694 (1961).PubMedGoogle Scholar
  8. 8.
    Y. Li, T. Peng, Y. Yang, C. Niu, L.C. Archard, and H. Zhang, High prevalence of enteroviral genomic sequences in myocardium from cases of endemic cardiomyopathy (Keshan disease) in China, Heart 83, 696–701 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    S. D. Cho, C. Jiang, B. Malewicz, et al., Methyl selenium metabolites decrease prostate-specific antigen expression by inducing protein degradation and suppressing androgen-stimulated transcription, Mol. Cancer Ther. 3, 605–611 (2004).PubMedGoogle Scholar
  10. 10.
    R. Brigelius-Flohe, A. Banning, M. Kny, and G. F. Bol, Redox events in interleukin-1 signaling Arch. Biochem. Biophys. 423, 66–73 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Xia, H. E. Ganther, A. Egge, and J. J. Abramson, Selenium compounds modulate the calcium release channel/ryanodine receptor of rabbit skeletal muscle by oxidizing functional thiols, Biochem. Pharmacol. 67, 2071–2079 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    M. W. Brown and J. H. Watkinson, An automated fluorometric method for the determination of nanogram quantities of selenium, Anal. Chim. Acta 89, 29–35 (1977).CrossRefGoogle Scholar
  13. 13.
    M. A. Beilstein and P. D. Whanger, Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins, J. Nutr. 116, 1701–1710 (1986).PubMedGoogle Scholar
  14. 14.
    M. Mahadevappa and J. A. Warrington, A high-density probe array sample preparation method using 10-to 100-fold fewer cells, Nat. Biotechnol. 17, 1134–1136 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    G. V. Kryukov, S. Castellano, S. V. Novoselov, et al., Characterization of mammalian selenoproteomes, Science 300, 1439–1443 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    R. C. McKenzie, J. R. Arthur, and G. J. Beckett, Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects, Antioxid. Redox Signal. 4, 339–351 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Bai, The combined effect of selenium deficiency and viral infection on the myocardium of mice (preliminary study) (author's transl). Zhongguo Yi Xue Ke Xue Yuan Zue Bao 2, 29–31 (1980) (in Chinese).Google Scholar
  18. 18.
    J. E. Oldfield, O. H. Muth, and J. R. Schubert, Selenium and vit. E as related to growth and white muscle disease in lambs, Proc. Soc. Exp. Biol. Med. 103, 799–800 (1960).PubMedGoogle Scholar
  19. 19.
    J. A. Noble, A. M. White, L. C. Lazzeroni, et al., A polymorphism in the TCF7 gene, C883A, is associated with type 1 diabetes, Diabetes 52, 1579–1582 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Ramoyska, A. Basson, A. Filby, G. Legname, M. Lovatt, and B. Seddon, The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation, Immunol. Rev. 191, 107–118 (2003).CrossRefGoogle Scholar
  21. 21.
    D. Weichenhan, B. Kunze, S. Zacker, W. Traut, and H. Winking, Structure and e expression of the murine Sp100 nuclear dot gene, Genomics 43, 298–306 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    J. W. Regan, EP2 and EP4 prostanoid receptor signaling, Life Sci 74, 143–153 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Fujikawa, A. V. Miletic, F. W. Alt, et al., Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells, J. Exp. Med. 198, 1595–1608 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Nakamura, T. Kato, T. Yamamura, et al., Characterization of T cell receptor beta chains of accumulating T cells in chronic ongoing myocarditis demonstrated by heterotopic cardiac transplantation in mice, Jpn. Circ. J. 65, 106–110 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    K. K. Hirschi and M. W. Majesky, Smooth muscle stem cells, Anat. Rec. 276A, 22–33 (2004).CrossRefGoogle Scholar
  26. 26.
    T. N. Dear and T. Boehm, Diverse mRNA expression patterns of the mouse calpain genes Capn5, Capn6 and Capn11 during development, Mech. Dev. 89, 201–209 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Rao, B. Puschner, and T. A. Prolla, Gene expression profiling of low selenium status in the mouse intestine: transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress, J. Nutr. 131, 3175–3181 (2001).PubMedGoogle Scholar
  28. 28.
    M. A. Beck, Selenium and host defence towards viruses, Proc. Nutr. Soc. 58, 707–711 (1999).PubMedGoogle Scholar
  29. 29.
    J. E. Spallholz, L. M. Boylan, and H. S. Larsen, Advances in understanding selenium's role in the immune system. Ann. N. Y. Acad. Sci. 587, 123–139 (1990).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • L. A. Hooven
    • 1
  • J. Butler
    • 1
  • L. W. Ream
    • 2
  • P. D. Whanger
    • 1
  1. 1.Department of Environmental and Molecular ToxicologyOregon State UniversityCorvallis
  2. 2.Department of MicrobiologyOregon State UniversityCorvallis

Personalised recommendations