Biological Trace Element Research

, Volume 109, Issue 1, pp 75–89 | Cite as

An assessment of time-dependent effects of lead exposure in algerian mice (Mus spretus) using different methodological approaches

  • C. C. Marques
  • A. C. Nunes
  • T. Pinheiro
  • P. A. Lopes
  • M. C. Santos
  • A. M. Viegas-Crespo
  • M. G. Ramalhinho
  • M. L. Mathias
Original Articles


Time-dependent effects of lead (Pb) toxicity were studied in Algerian mice (Mus spretus) treated with Pb acetate via drinking water (1 g Pb acetate/L) for different periods of exposure (15, 45, and 90 d). End points included the determination of hepatic Pb concentration and the assessment of some morphophysiological, biochemical and cytogenetical parameters. A control group receiving distilled water was also monitored for comparative purposes. Hepatic Pb accumulation increased with the time of exposure and was significantly higher in treated mice when compared to controls. In association with significant body mass loss in Pb-exposed mice, for 15 and 45 d, a significant increase in the relative spleen mass was observed after 45 d of intoxication. Pb-exposed mice also showed significant decreases in red blood cells, hematocrit, and mean corpuscular hemoglobin. On the contrary, changes in plasma transferases (aspartate aminotransferase and alanine aminotransferase) and hepatic superoxide dismutase activities did not reach statistical significance. A significant increase in the frequency of micronucleated polychromatic bone marrow erythrocytes was also found in the 90-d-exposed mice, compared to nontreated mice and the other exposed groups. Exposure to Pb acetate resulted also in a slight time-dependent decrease of the polychromatic-normochromatic ratio. These results support the concept that a long-term chronic exposure to Pb induced alterations upon some morphophysiological and genetic paramaters in Algerian mice.

Index Entries

Lead acetate intoxication Mus spretus biomarkers time-dependent effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. Alloway and D. C. Ayres, Chemical Principles of Environmental Pollution, Blackie Academic and Professional, Oxford (1993).Google Scholar
  2. 2.
    S. J. Stohs and D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18(2), 321–336 (1995).CrossRefGoogle Scholar
  3. 3.
    R. F. Shore and B. A. Rattner, Ecotoxicology of Wild Mammals, Ecological and Environmental Toxicology Series, Wiley, Chichester (2001).Google Scholar
  4. 4.
    N. Erçal, P. Treeratphan, P. Lutz, T. C. Hammond, and R. H. Matthews, N-Acetylcysteine protects Chinese hamster ovary (CHO) cells from lead-induced oxidative stress, Toxicology 108, 57–64 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Gürer, H. Özgünes, R. Neal, D. R. Spitz, and N. Erçal, Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats, Toxicology 128, 181–189 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Pande, A. Mehta, B. P. Pant, and S. J. S. Flora, Combined administration of a chelating agent and an antioxidant in the prevention and treatment of acute lead intoxication in rats, Environ. Toxicol. Pharmacol. 9, 173–184 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    R. C. Patra, D. Swarup, and S. K. Dwivedi, Antioxidant effects of c tocopherol, ascorbic acid and l-methionine on lead induced oxidative stress to the liver, kidney and brain in rats, Toxicology 162, 81–88 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    P.-C. Hsu and Y. L. Guo, Antioxidant nutrients and lead toxicity, Toxicology 180, 33–44 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    V. N. Adonaylo and P. I. Oteiza, Pb2+ promotes lipid oxidation and alterations in membrane physical properties, Toxicology 132, 19–32 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    F. M. Johnson, The genetic effects of environmental lead, Mutat. Res. 410 123–140 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    E. K. Silbergeld, Facilitative mechanisms of lead as a carcinogen, Mutat. Res. 533, 121–133 (2003).PubMedGoogle Scholar
  12. 12.
    S. S. Talmage and B. T. Walton, Small mammals as monitors of environmental contaminations, Rev. Environ. Contam. Toxicol. 119, 47–108 (1991).PubMedGoogle Scholar
  13. 13.
    A. Gorriz, S. Llacuna, M. Riera, and J. Nadal, Effects of air pollution on hematological and plasma parameters in Apodemus sylvaticus and Mus musculus, Arch. Environ. Contam. Toxicol. 31, 153–158 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Tanzarella, F. Degrassi, M. Cristaldi, et al., Genotoxic damage in free-living Algerian mouse (Mus spretus) after the Coto Doñana ecological disaster, Environ. Pollut. 115(1), 43–48 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Bonilla-Valverde, J. Ruiz-Laguna, A. Muñoz, et al., Evolution of biological effects of Aznalcóllar mining spill in the Algerian mouse (Mus spretus) using biochemical biomarkers, Toxicology 197, 123–138 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    A. C. Nunes, M. L. Mathias, and A. M. Crespo, Morphological and haematological parameters in the Algerian mouse (Mus spretus) inhabiting an area contaminated with heavy metals, Environ. Pollut. 113, 87–93 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    A. C. Nunes, J.-C. Auffray, and M. L. Mathias, Developmental instability in a riparian population of the Algerian mouse (Mus spretus) associated with a heavy metal polluted area in central Portugal, Arch. Environ. Contam. Toxicol. 41, 515–521 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    A. M. Viegas-Crespo, P. A. Lopes, M. T. Pinheiro, et al., Hepatic elemental contents and antioxidant enzyme activities in Algerian mice (Mus spretus) inhabiting a mine area at Central Portugal, Sci. Total Environ. 311, 101–109 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    B. Mitruka and H. Rawnsley, Clinical Biochemical and Haematological Reference Values in Normal Experimental Animals and Normal Humans, 2nd ed., Masson, New York (1981).Google Scholar
  20. 20.
    H. P. Misra and I. Fridovich, The role of superoxide dismutase, J. Biol. Chem. 247, 3170–3175 (1972).PubMedGoogle Scholar
  21. 21.
    H. P. Misra, Adrenochrome assay, in CRC Handbook of Methods for Oxygen Radical Research, R. Greenwald, ed., CRC, Boca Raton, FL, pp. 237–241 (1985).Google Scholar
  22. 22.
    A. G. Gornall, C. J. Bardawill, and M. M. David, Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751–766 (1949).Google Scholar
  23. 23.
    W. Schmid, Chemical mutagen testing on in vivo somatic mammalian cells, Agents Actions 3, 77–85 (1973).PubMedCrossRefGoogle Scholar
  24. 24.
    W. Schmid, The micronucleus test, Mutat. Res. 31, 9–15 (1975).PubMedGoogle Scholar
  25. 25.
    J. W. Hart and H. Engberg-Pedersen, Statistics of the mouse bone-marrow micronucleus test: counting, distribution and evaluation of results, Mutat. Res. 111, 195–207 (1983).PubMedGoogle Scholar
  26. 26.
    J. T. MacGregor, J. A. Heddle, M. Hite, et al., Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes, Mutat. Res. 189, 103–112 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    M. A. Barreiros, T. Pinheiro, M. F. Araújo, M. M. Costa, M. Palha, and R. C. da Silva, Quality assurance of X-ray spectrometry for chemical analysis, Spectrochim. Acta B56, 2095–2106 (2001).Google Scholar
  28. 28.
    M. Norusis, SPSS Professional statistics, 5. 0, SPSS, Chicago, IL (1992).Google Scholar
  29. 29.
    H. J. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and variance unknown, J. Am. Statist. Assoc. 64, 399–402 (1967).CrossRefGoogle Scholar
  30. 30.
    R. Sokal and F. Rolf, Biometry, 3rd ed. W. H. Freeman, New York (1995).Google Scholar
  31. 31.
    W. C. Ma, Lead in mammals, in Environmental Contaminants in Wildlife, W. N. Beyer, G. H. Heinz, and A. W. Redmon-Norwood, eds., CRC/lewis, Boca Raton, FL, pp. 281–296, (1996).Google Scholar
  32. 32.
    R. A. Goyer, D. L. Leonard, J. F. Moore, B. Rhyne, and M. Krigman, Lead dosage and the role of the intracellular inclusion body, Arch. Environ. Health 20, 705–711 (1970).PubMedGoogle Scholar
  33. 33.
    M. Wintrobe, G. Lee, D. Boggs, et al., Clinical Hematology, 8th ed., Lea and Febiger, Philadelphia (1981).Google Scholar
  34. 34.
    C. Teijón, R. Olmo, M. D. Blanco, A. Romero, and J. M. Teijón, Effects of lead administration at low doses by different routes on rat spleens. Study of response of splenic lymphocytes and tissue lysozyme, Toxicology 191, 245–258 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    U. Mittwoch, Differential growth of human foetal gonads with respect to sex and body side, Ann. Hum. Genet. 40, 133–138 (1976).PubMedGoogle Scholar
  36. 36.
    V. N. Adonaylo and P. I. Oteiza, Lead intoxication: antioxidant defenses and oxidative damage in rat brain, Toxicology 135, 77–85 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    H. P. Monteiro, D. S. P. Abdalla, A. Faljoni-Alàrio, and E. J. H. Bechara, Generation of active oxygen speces during coupled autoxidation of oxyhemoglobin and σ-aminolevulinic acid, Biochim. Biophys. Acta 881, 100–106 (1986).PubMedGoogle Scholar
  38. 38.
    M. M. Kaplan, Laboratory test, in Diseases of the Liver, 7th ed., L. Schiff and E. R. Schiff, eds., J. B. Lippincott, Philadelphia pp. 108–144 (1993).Google Scholar
  39. 39.
    L. S. Friedman, P. Martin, and S. J. Munoz, Liver function tests and the objective evaluation of the patient with liver disease, in Hepatology: A Text Book of Liver Disease, 3rd ed., D. Zakin and T. D. Boyer, eds., W. B. Saunders, Philadelphia, pp. 791–833 (1996).Google Scholar
  40. 40.
    D. Peakall, Animal Biomarkers as Pollution Indicators, Ecotoxicology Series 1, Chapman & Hall, London (1992).Google Scholar
  41. 41.
    T. G. Rossman, Cloning genes whose levels of expression are altered by metals: implications for human health research, Am. J. Ind. Med. 38, 335–339 (2000).PubMedCrossRefGoogle Scholar
  42. 42.
    T. Maitani, A. Watahiki, and K. T. Suzuki, Induction of metallothionein after lead administration by three injection routes in mice, Toxicol. Appl. Pharmacol. 83, 211–217 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    L. A. Ieradi, S. Moreno, J. P. Bolívar, A. Cappai, A. Di Benedetto, and M. Cristaldi, Freeliving rodents as bioindicators of genetic risk in natural protected areas, Environ. Pollut. 102(2–3), 265–268 (1998).CrossRefGoogle Scholar
  44. 44.
    P. V. Tachi, S. Nishimae, and K. Saito, Cytogenetic effects of lead acetate on rat bone marrow cells, Arch. Environ. Health 40, 144–147 (1985).PubMedGoogle Scholar
  45. 45.
    H. C. Wulf, Sister chromatid exchanges in human lymphocytes exposed to nickel and lead, Dan. Med. Bull. 27, 40–42 (1980).PubMedGoogle Scholar
  46. 46.
    E. I. Aboul-Ela, The protective effect of calcium against genotoxicity of lead acetate administration on bone marrow and spermatocyte cells of mice in vivo, Mutat. Res. 516, 1–9 (2002).PubMedGoogle Scholar
  47. 47.
    M. Valverde, C. Trejo, and E. Rojas, Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction?, Mutagenesis 16, 265–270 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • C. C. Marques
    • 1
  • A. C. Nunes
    • 1
  • T. Pinheiro
    • 3
  • P. A. Lopes
    • 1
  • M. C. Santos
    • 2
  • A. M. Viegas-Crespo
    • 1
  • M. G. Ramalhinho
    • 4
  • M. L. Mathias
    • 1
  1. 1.Centro de Biologia Ambiental, Departamento de Biologia AnimalFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  2. 2.Centro Química e Bioquímica, Departamento de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  3. 3.Laboratório de Feixes de lõesInstituto Tecnológico Nuclear (ITN)SacavémPortugal
  4. 4.Museu Nacional de História Natural (Museu Bocage)Centro de Biologia AmbientalLisboaPortugal

Personalised recommendations