Biological Trace Element Research

, Volume 109, Issue 1, pp 25–33 | Cite as

Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats

  • Ketan Modi
  • D. D. Santani
  • R. K. Goyal
  • P. A. Bhatt
Original Articles


Although coenzyme Q10 (CoQ10) is a component of the oxidative phosphorylation process in mitochondria that converts the energy in carbohydrates and fatty acids into ATP to drive cellular machinery and synthesis, its effect in type I diabetes is not clear. We have studied the effect of 4 wk of treatment with CoQ10 (10 mg/kg, ip, daily) in streptozotocin (STZ)-induced (40 mg/kg, iv in adult rats) type I diabetes rat models. Treatment with CoQ10 produced a significant decrease in elevated levels of glucose, cholesterol, triglycerides, very-low-density lipoprotein, lowdensity lipoprotein, and atherogenic index and increased high-density lipoprotein cholesterol levels in diabetic rats. CoQ10 treatment significantly decreased the area under the curve over 120 min for glucose in diabetic rats, without affecting serum insulin levels and the area under the curve over 120 min for insulin in diabetic rats. CoQ10 treatment also reduced lipid peroxidation and increased antioxidant parameters like superoxide dismutase, catalase, and glutathione in the liver homogenates of diabetic rats. CoQ10 also lowered the elevated blood pressure in diabetic rats. In conclusion, CoQ10 treatment significantly improved deranged carbohydrate and lipid metabolism of experimental chemically induced diabetes in rats. The mechanism of its beneficial effect appears to be its antioxidant property.

Index Entries

Coenzyme Q10 diabetes mellitus antioxidant activity insulin resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature 414, 813–820 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Brownlee, Negative consequence of glycation, Metabolism 49, 9–13 (2000).PubMedGoogle Scholar
  3. 3.
    P. Rosen, P. P. Nawroth, G. King, et al., The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American Diabetic Association, and the German diabetic society, Diabetes 17, 189–212 (2001).CrossRefGoogle Scholar
  4. 4.
    I. C. West, Radicals and oxidative stress in diabetes, Diabetes Med. 17, 171–180 (2000).CrossRefGoogle Scholar
  5. 5.
    D. Giuglian, A. Ceriello, and G. Paolisso, Diabetes mellitus, hypertension and cardiovascular disease. Which role for oxidative stress? Metabolism 44, 363–368 (1995).CrossRefGoogle Scholar
  6. 6.
    A. K. Mohamed, A. Bierhaus, S. Schiekofer, et al., The role of oxidative stress and NFκB activation in late diabetic complications, Biofactors 10, 157–167 (1999).PubMedGoogle Scholar
  7. 7.
    C. D. A. Stehouwer and N. C. Schaper, The pathogenesis of vascular complications of diabetes mellitus. One voice or many? Eur. J. Clin. Invest. 26, 533–543 (1996).CrossRefGoogle Scholar
  8. 8.
    M. Yaqoob, A. W. Patrick, P. McClelland, et al., Relationship between markers of endothelial dysfunction, oxidant injury and tubular damage in patients with insulin-dependent diabetes mellitus, Clin. Sci. 85, 557–562 (1993).PubMedGoogle Scholar
  9. 9.
    S. R. Maxwell and H. Thomson, Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes, mellitus, Eur. J. Clin. Invest. 27, 484–490 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    S. A. Santini and G. Marra, Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM, Diabetes 46, 1853–1858 (1997).PubMedCrossRefGoogle Scholar
  11. 11.
    L. ErnsteerL and G. Dallner, Biochemical, physiological and medical aspects of ubiquinone function, Biochem. Biophys. Acta. 1271, 195–204 (1995).Google Scholar
  12. 12.
    J. Kucharska, Z. Braunova, I. O.uliena, et al., Deficit of coenzyme Q10 in heart and liver mitochondria of rats with Streptozotocin induced diabetes, Physiol. Res. 49, 411–418 (2000).PubMedGoogle Scholar
  13. 13.
    R. Stocker and B. Frei, Endogenous antioxidant defenses in human blood plasma, in Oxidants and Antioxidants, H. Sies, ed., Academic, London, pp. 213–243 (1991).Google Scholar
  14. 14.
    H. Ohkawa, N. Ohis, and K. Yagi, Assay of lipid peroxides in animal tissues by thiobarbituric reaction, Anal. Biochem. 95 351 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Mishra, and I. Frodvich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247, 31–70 (1972).Google Scholar
  16. 16.
    H. Aebi, Catalase in vitro. Methods in Enzymology, L. Packer, ed., Academic, New York Vol. 105, p. 121–126 (1984).Google Scholar
  17. 17.
    E. Beutler and B. Kelly, The effect of sodium on RBC glutathione, J. Experimentia 19, 96 (1963).CrossRefGoogle Scholar
  18. 18.
    O. Lowery, N. Rosenbrough, A. Farr, et al., Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265 (1951).Google Scholar
  19. 19.
    R. Stocker and B. Frei, Endogenous antioxidant defenses in human blood plasma, in Oxidative Stress: Oxidants and Antioxidants, H. Sies, ed., Academic, London, pp. 213–243 (1991).Google Scholar
  20. 20.
    B. Rodrigues, R. K. Goyal, and J. H. McNeill, Effect of hydralazine on STZ-induced diabetic rats: prevention of hyerlipidenia and improvement in cardiac function, J. Pharmacol. Exp. Ther. 237, 292–299 (1986).PubMedGoogle Scholar
  21. 21.
    R. B. Singh, S. N. Shinde, R. K. Chopra, et al., Effect of CoQ10 on experimental atherosclerosis and chemical composition and quality of atheroma in rabbits, Atherosclerosis 148, 275–282 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Esterbauer, J. Gebicki, and G. Jurgens, The role of lipid peroxidation and antioxidants in oxidative modification of LDL, Free Radical Biol. Med. 13, 341–390 (1992).CrossRefGoogle Scholar
  23. 23.
    S. M. Lynch, J. D. Morrow, L. J. Roberts, et al., Formation of non-cyclo oxygenase derived prostanoids, (F2-isoprostares) in plasma and low-density lipoprotein exposed to oxidative stress in vivo, J. Clin. Invest. 93, 998–1004 (1994).PubMedGoogle Scholar
  24. 24.
    A. Rabinovitch, W. L. Suarez-Pinzon, K. Strynadka, et al., Human pancreatic islet β-cell destruction by cytokines involves oxygen free radicals and aldehyde production, J. Clin. Endocri. Metab. 81, 3197–3202 (1996).CrossRefGoogle Scholar
  25. 25.
    J. Ludvigsson, Intervention at diagnosis of type I diabetes using antoxidants of photopheresis, Diabetes Metab. Rev. 9, 329–336 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Suzuki, Y. Hinkio, and K. Komatu, Oxidative dasmage to mitochondrial DNA and its relationship to diabetes complications, Diabetes Res. Clin. Pract. 45, 161–168 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Steinberg, S. Parthasarathy, T. E. Carew, et al., Beyond cholesterol: modification of low-density lipoprotein that increase to atherogenicity, N. Engl. J. Med. 320, 915–924 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    P. T. Shih, M. J. Elices, Z. T. Fang, et al., Minimally, modified low density lipoprotein induces monocyte adhesion to endothelial connecting segment I by activating B1-integrin, J. Clin. Invest. 103, 613–625 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    R. B. Singh, M. A. Niaz, S. S. Rastogi, et al., Effect of hydrosoluble CoQ10 on blood pressure and insulin resistance in hypertensive patients with coronary artery disease, J. Hum. Hypertens. 13, 203–208 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Ketan Modi
    • 1
  • D. D. Santani
    • 1
  • R. K. Goyal
    • 1
  • P. A. Bhatt
    • 1
  1. 1.Department of PharmacologyL. M. College of PharmacyAhmedabadIndia

Personalised recommendations