Biological Trace Element Research

, Volume 108, Issue 1–3, pp 43–52 | Cite as

Plasma values of oxidants and antioxidants in acute brain hemorrhage

Role of free radicals in the development of brain injury
  • Recep Aygul
  • Berna Demircan
  • Fuat Erdem
  • Hizir Ulvi
  • Abdulkadir Yildirim
  • Fatih Demirbas
Original Articles


The levels of oxidants xanthine oxidase (XO), nitric oxide (NO), and malondialdehyde (MDA) and of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GRD) were determined in plasma within 24 h after onset of hemorrhagic stroke in 17 patients (9 men and 8 women, aged 60.7±11.5 yr) and in 20 healthy controls (12 men and 8 women, aged 62.5±8.3 yr). Compared to controls, the plasma SOD and total superoxide scavenger activi ties (TSSA) were significantly lower and the NO levels were significantly higher among the stroke patients. XO showed a slight, nonsignificant increase in the patients, but the levels of MDA, NSSA, GRD, and GSH-Px did not show any significant differences between the two groups. The hemorrhage volume was negatively, correlated with the initial score of the Glasgow Coma Scale and a positive correlation with lethal outcome, but it did not correlate significantly with any of the measured parameters. The results suggest that free radicals might play a role in the development of brain injury following brain hemorrhage.

Index Entries

Brain hemorrhage lipid peroxidation reactive oxygen species oxidative brain injury antioxidant enzymes xanthine oxidase nitric oxide malondialdehyde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Butcher and J. Laidlaw, Current intracerebral haemorrhage management J. Clin. Neurosci. 10(2), 158–167 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    C. L. Sudlow and C. P. Warlow, Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration, Stroke 28, 491–499 (1997).PubMedGoogle Scholar
  3. 3.
    A. D. Mendelow, R. Bullock, G. M. Teasdale, et al., Intracranial haemorrhage induced at arterial pressure in the rat: II. Short term changes in local cerebral blood flow measured by autoradiography, Neurol. Res. 6, 189–193 (1984).PubMedGoogle Scholar
  4. 4.
    G. Y. Yang, A. L. Betz, T. L. Chenevert, et al., Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats, J. Neurosurg, 81, 93–102 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Bullock, J. Brock-Utne, J. van Dellen, et al., Intracerebral hemorrhage in a primate model: effect on regional cerebral blood flow, Surg. Neurol. 29, 101–107 (1998).CrossRefGoogle Scholar
  6. 6.
    B. D. Watson, Evaluation of concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke, Prog. Brain Res. 96, 69–95 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Chopp, P. H. Chan, C. Y. Hsu et al., DNA damage and repair in central nervous system injury, Stroke 27, 363–369 (1996).PubMedGoogle Scholar
  8. 8.
    S. Love, Oxidative stress in brain ischaemia, Brain Pathol. 9, 119–131 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    J. M. Braughler, L. A. Duncan, and R. L. Chase, The involvement of iron in lipid peroxidation, J. Biol. Chem. 261, 10,282–10,289 (1986).Google Scholar
  10. 10.
    B. N. Ames, M. T. Shigenega, and M. Hagen, Oxidants, antioxidants and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90, 7915–7922 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Halliwell, Reactive oxygen species and the central nervous system, J. Neurochem. 59, 1609–1623 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Wu, Y. Hua, R. F. Keep, et al., Iron and iron-handling proteins in the brain after intracerebral hemorrhage, Stroke 34, 2964 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    P. H. Chan, Role of oxidants in ischemic brain damage, Stroke 27, 1124–1129 (1996).PubMedGoogle Scholar
  14. 14.
    G. Teasdale and B. Jenett, Assessment of coma and impaired consciousness: a practical scale, Lancet 2, 81–83 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Jenett and M. Bond, Assessment of outcome after severe brain damage: a practical scale, Lancet 1, 480–484 (1975).CrossRefGoogle Scholar
  16. 16.
    I. Durak, O. Canpolat, M. Kacmaz, et al., Antioxidant interferences in superoxide dismutase activity methods using superoxide radical as substrate, Clin. Chem. Lab. Med. 36, 407 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Aebi, Catalase, in Methods of Enzymatic Analysis, H. U. Bergmeyer, ed., Verlag Chemie, Weinheim, pp. 673–678 (1974).Google Scholar
  18. 18.
    D. E. Paglia and W. N. Valentina, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–169 (1967).PubMedGoogle Scholar
  19. 19.
    R. E. Pinto and W. Bartlev, The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates, Biochem. J. 112, 109–115 (1969).PubMedGoogle Scholar
  20. 20.
    S. Hashimato, A new spectrophotometric assay method of xanthine oxidase in crude tissue homogenate, Anal. Biochem. 62, 425–435 (1974).Google Scholar
  21. 21.
    M. I. S. Hunter, B. C. Nlemadim, and D. L. W. Davidson, Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients, Neurochem. Res. 10, 1645–1652 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Moshage, B. Kok, J. R. Huizenga, et al., Nitrite and nitrate determinations in plasma: a critical evaluation, Clin. Chem. 41, 892–896 (1995).PubMedGoogle Scholar
  23. 23.
    P. N. Bories and C. Borres, Nitrate determination in biological fluids by an enzymatic one step assay with nitrate reductase, Clin. Chem. 41, 904–907 (1995).PubMedGoogle Scholar
  24. 24.
    H. H. Chen and J. F. Zhou, Low cholesterol in erythrocyte membranes and high lipoperoxides in erythrocytes are the potential risk factors for cerebral hemorrhagic stroke in human, Biomed. Environ. Sci. 14(3), 189–198 (2001).PubMedGoogle Scholar
  25. 25.
    M. B. Plotnikov, A. A. Lobanov, and V. V. Ivanov, Activation of lipid peroxidation in the brain in cerebral hemorrhage, Bull. Eksp. Biol. Med. 105(6), 677–678 (1988).Google Scholar
  26. 26.
    J. Wu, Y. Hua, R. F. Keep, et al., Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage, Brain Res. 953(1–2), 45–52 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    M. C. Polidori, P. Mecocci, and B. Frei, Plasma vitamin C levels are decreased and cor related with brain damage in patients with intracranial hemorrhage or head trauma, Stroke 32, 898–905 (2001).PubMedGoogle Scholar
  28. 28.
    K. Sudha, A. V. Rao, S. Rao, et al., Lipid peroxidation, hemolysis and antioxidant enzymes of erythrocytes in stroke, Indian J. Physiol. Pharmacol. 48(2), 199–205 (2004).PubMedGoogle Scholar
  29. 29.
    R. A. F. Felberg, J. C. Grotta, A. L. Shirzadi, et al., Cell death in experimental intracerebral hemorrhage: the “black hole” model of hemorrhagic damage, Ann. Neurol. 51(4), 517–524 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Peeling, H. J. Yan, S. G. Chen, et al., Protective effects of free radical inhibitors in intracerebral hemorrhage in rat, Brain Res. 795(1–2), 63–70 (1998).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Peeling, M. R. Del Bigio, D. Corbett, et al., Efficacy of disodium 4 (tert butylim ino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke, Neuropharmacology 40(3), 433–439 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    D. Mantle, S. Siddique, F. Eddeb, et al., Comparison of protein carbonyl and antioxidant levels in brain tissue from intracerebral haemorrhage and control cases, Clin. Chim. Acta 312(1–2), 185–190 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    D. S. Warner, H. Sheng, and I. B. Haberle, Oxidants, antioxidants and the ischemic brain, J. Exp. Biol. 207, 3221–3231 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    F. J. Romero, F. Bosch-Morell, M. J. Romero, et al., Lipid peroxidation products and antioxidants in human disease, Environ. Health Perspect. 106, 1229–1234 (1998).PubMedCrossRefGoogle Scholar
  35. 35.
    C. Iadecola, Bright and dark sides of nitric oxide in ischemic brain injury, Trends Neurosci. 20, 132–139 (1997).PubMedCrossRefGoogle Scholar
  36. 36.
    J. Castillo, R. Rama, A. Dávalos, Nitric oxide-related brain damage in acute ischemic stroke, Stroke 31, 852–858 (2000).PubMedGoogle Scholar
  37. 37.
    C. P. Cano, V. P. Bermudez, H. E. Atencio, et al., Increased serum malondial dehyde and decreased nitric oxide within 24 hours of thrombotic stroke onset, Am. J. Ther. 10(6), 473–476 (2003).PubMedCrossRefGoogle Scholar
  38. 38.
    X. Jin, H. Zhao, J. F. Wang, et al., Influence of beta-endorphin on function of immune system of patients with cerebral hemorrhage, Zhonghua Yi Xue Za Zhi 83(16), 1409–1442 (2003).PubMedGoogle Scholar
  39. 39.
    O. D. Saugstad, Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury, Pediatrics 98, 103–107 (1996).PubMedGoogle Scholar
  40. 40.
    A. L. Betz, Identification of hypoxanthine transport and xanthine oxydase activity in brain capillaries, J. Neurochem. 44, 574–579 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    J. W. Beetsch, T. S. Park, L. L. Dugan, et al., Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells, Brain Res. 786(1–2), 89–95 (1998).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Sermet, N. Tasdemir, B. Deniz, et al., Time-dependent changes in superoxide dismutase, catalase, xanthine dehydrogenase and oxidase activities in focal cerebral ischaemia, Cytobios 102(401), 157–172 (2000).PubMedGoogle Scholar
  43. 43.
    J. P. Broderick, Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality, Stroke 247, 987–993 (1993).Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Recep Aygul
    • 1
  • Berna Demircan
    • 2
  • Fuat Erdem
    • 3
  • Hizir Ulvi
    • 1
  • Abdulkadir Yildirim
    • 2
  • Fatih Demirbas
    • 4
  1. 1.Department of Neurology Medical FacultyAtaturk UniversityErzurumTurkey
  2. 2.Department of Biochemistry Medical FacultyAtaturk UniversityErzurumTurkey
  3. 3.Department of Internal Medicine, Medical FacultyAtaturk UniversityErzurumTurkey
  4. 4.Public Health Central LaboratoriesKonyaTurkey

Personalised recommendations