Biological Trace Element Research

, Volume 103, Issue 2, pp 155–168 | Cite as

Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content

  • Graham H. Lyons
  • Yusuf Genc
  • James C. R. Stangoulis
  • Lyndon T. Palmer
  • Robin D. Graham
Original Articles

Abstract

Selenium (Se) is an essential micronutrient for animals and humans, and wheat is a major dietary source of this element. It is improtant that postharvest processing losses of grain Se are minimized. This study, using grain dissection, milling with a Quadrumat mill, and baking and toasting studies, investigated the distribution of Se and other mineral nutrients in wheat grain and the effect of postharvest processing on their retention. The dissection study, although showing Se concentration to be highest in the embryo, confirmed (along with the milling study) previous findings that Se (which occurs mostly as selenomethionine in wheat grain) and S are more evenly distributed throughout the grain when compared to other mineral nutrients, and hence, lower proportions are removed in the milling residue. Postmilling processing did not affect Se concentration or content of wheat products in this study.

No genotypic variability was observed for grain distribution of Se in the dissection and milling studies, in contrast to Cu, Fe., Mn, and Zn. This variability could be exploited in breeding for higher proportions of these nutrients in the endosperm to make white flour more nutritious. Further research could include grain dissection and milling studies using larger numbers of cultivars that have been grown together and a flour, extraction rate of around 70%

Index Entries

Selenium zinc iron copper manganese wheat distribution processing milling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Combs, Selenium in global food systems, Br. J. Nutr. 85, 517–547 (2001).PubMedGoogle Scholar
  2. 2.
    G. H. Lyons, J. C. R. Stangoulis, and R. D. Graham, High-selenium wheat: (2002). biofortification for better health, Nutr. Res. Rev. 16, 45–60 (2003).CrossRefGoogle Scholar
  3. 3.
    M. P. Rayman, The argument for increasing selenium intake, Proc. Nutr. Soc. 61, 203–215Google Scholar
  4. 4.
    J. Barrett, C. Patterson, C. Reilly, and U. Tinggi, Selenium in the diet of children with phenylketonuria, in Nutrient Availability: Chemical and Biological Aspects, D. Southgate, I. Johnson, and G. Fenwick, eds., Royal Society of Chemistry, London, pp. 281–283 (1989).Google Scholar
  5. 5.
    H. M. Meltzer, G. Norheim, E. B. Loken, and H. Holm, Supplementation with wheat selenium induces a dose-dependent response in serum and urine of a selenium-replete population, Br. J. Nutr. 67, 287–294 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    I. S. Djujic, O. N. Jozanov-Stankov, M. Milovac, V. Jankovic, and V. Djermanovic, Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products. Biol. Trace Element Res. 77(3), 273–285 (2000).CrossRefGoogle Scholar
  7. 7.
    J. Hakkarainen, Bioavailability of selenium. Norweg J. Agric. Sci. 11, 21–35 (1993).Google Scholar
  8. 8.
    U. C. Gupta and S. C. Gupta, Selenium in soils and crops, its deficiencies in livestock and humans: implications for management, Commun. Soil Sci. Plant Anal. 31, 1791–1807 (2000).Google Scholar
  9. 9.
    T. Ylaranta, Effect of selenium fertilization and foliar spraying at different growth stages on the selenium content of spring wheat and barley, Ann. Agric. Fenn. 23, 85–95 (1984).Google Scholar
  10. 10.
    R. F. Burk and N. W. Solomons, Trace elements and vitamins and bioavailability as related to wheat and wheat foods, Am. J. Clin. Nutr. 41, 1091–1102 (1985).PubMedGoogle Scholar
  11. 11.
    M. S. Bratakos, T. F. Zafiropoulos, P. A. Siskos, and P. V. Ioannou, Selenium losses on cooking Greek foods, Int. J. Food Sci. Technol. 23, 585–590 (1988).Google Scholar
  12. 12.
    C. Reilly, Selenium in Food and Health, Blackie, London (1996).Google Scholar
  13. 13.
    S. Ahmad, S. Waheed, A. Mannan, I Fatima, and I. H. Qureshi, Evaluation of trace elements in wheat and wheat by-products, J. Am. Assoc. Anal. Chem. 77, 11–18 (1994).Google Scholar
  14. 14.
    J. Korkman, The effect of selenium fertilizers on the selenium content of barley, spring wheat and potatoes, J. Sci. Agric. Soc. Finland 52, 495–504 (1980).Google Scholar
  15. 15.
    H. J. Robberecht, H. Deelstra, and O. van Schoor, Effect of milling and refining on the selenium and chromium content of cereals, Belg. J. Food Chem. Biotechnol. 45, 43–49 (1990).Google Scholar
  16. 16.
    A. L. Moxon, O. E. Olson, E. I. Whitehead, R. J. Hilmoe, and S. N. White, Selenium distribution in milled seleniferous wheats. Cereal Chem. 20, 376–380 (1943).Google Scholar
  17. 17.
    K. Lorenz, Selenium in wheats and commercial wheat flours. Cereal Chem. 55(3), 287–294 (1978).Google Scholar
  18. 18.
    K. Lorenz, R. Loewe, D. Weadon, and W. Wolf, Natural levels of nutrients in commercially milled wheat flours. 3. Mineral analysis, Cereal Chem. 57, 65–69 (1980).Google Scholar
  19. 19.
    E. W. Toepfer, M. M. Polansky, J. F. Eheart, et al., Nutrient composition of selected wheats and wheat products. 11. Summary, Cereal Chem. 49, 173–186 (1972).Google Scholar
  20. 20.
    R. J. Ferretti and O. A. Levander, Effect of milling and processing on the selenium content of grains and cereal products, J. Agric. Food Chem. 22, 1049–1051 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    O. E. Olson, E. J. Novacek, E. I. Whitehead, and I. C. Palmer IC, Investigations on selenium in wheat. Phytochemistry 9, 1181–1188 (1970).CrossRefGoogle Scholar
  22. 22.
    G. N. Schrauzer, The nutritional significance, metabolism and toxicology of selenomethionine. Adv. Food Nutr. Res. 47, 73–112 (2003).CrossRefGoogle Scholar
  23. 23.
    W. R. Wolf and R. J. Goldschmidt, Selenomethionine contents of NIST wheat reference materials. Anal. Bioanal. Chem. 378(5), 1175–1181 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    X. Yang, Y. Tian, P. Ha, and L. Gu, Determination of the selenomethionine content in grain and human blood. Wei Sheng Yan Jiu 26(2), 113–116 (1997).PubMedGoogle Scholar
  25. 25.
    J. A. Dudek, E. R. Elkins, and B. A. Behl, Effects of cooking and canning on the mineral contents of selected seafoods, J. Food Comp. Anal. 2, 273–285 (1989).CrossRefGoogle Scholar
  26. 26.
    C. D. Thomson and M. F. Robinson, Selenium content of foods consumed in Otago, New Zealand, NZ Med. J. 103, 130–135 (1990).Google Scholar
  27. 27.
    D. J. Higgs, V. C. Morris, and O. A. Levander, The effect of cooking on selenium content of foods, J. Agric. Food Chem. 20, 678–680 (1972).PubMedCrossRefGoogle Scholar
  28. 28.
    O. E. Olson and I. S. Palmer, Selenium in foods purchased or produced in South Dakota, J. Food Sci. 49, 446–452 (1984).CrossRefGoogle Scholar
  29. 29.
    D. Arthur, Selenium content of Canadian foods, Can. Inst. Food Sci. Technol. J. 5, 165–169 (1972).Google Scholar
  30. 30.
    V. C. Morris and O. A. Levander, Selenium content of foods, J. Nutr. 100, 1383–1388 (1970).PubMedGoogle Scholar
  31. 31.
    B. Hakansson, M. Jagerstad, R. Oste, B. Akesson, and L. Jonsson, The effects of various thermal processes on protein quality, vitamins and selenium content in whole grain wheat and white flour. J. Cereal Sci. 6, 269–282 (1987).CrossRefGoogle Scholar
  32. 32.
    S. J. Barker, B. Stummer, L. Gao, I. Dsipain, P. J. O'Conner, and S. E. Smith, A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonisation: isolation and preliminary characterization. Plant J. 15, 791–797 (1998).CrossRefGoogle Scholar
  33. 33.
    R. M. Welch, M. E. Smith, D. Van Campen, and S. C. Schaefer, Improving the mineral reserves and protein quality of maize (Zea mays L.) kernels using genes. Plant Soil 155/156, 215–218 (1993).CrossRefGoogle Scholar
  34. 34.
    M. I. Tracy and G. Moller, Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis. Part 1: selenium, J. Assoc. Offic. Anal. Chem. 73, 404–410 (1990).Google Scholar
  35. 35.
    M. Moussavi-Nik, Z. Rengel, J. N. Pearson, and G. Hollamby, Dynamics of nutrient remobilisation from seed of wheat genotypes during imbibition, germination and early seedling growth, Plant Soil 197, 271–280 (1997).CrossRefGoogle Scholar
  36. 36.
    M. M. MacMasters, J. J. C. Hinton, and D. Bradbury, Microscopic structure and composition of the wheat kernel, in Wheat Chemistry and Technology, Y. Pomeranz, ed., American Society of Cereal Chemists, St. Paul, MN, pp. 51–114 (1971).Google Scholar
  37. 37.
    M. Fenech, M. Noakes P. Clifton, and D. Topping, Aleurone flour is a rich source of bioavailable folate in humans, J. Nutr. 129, 1114–1119 (1999).PubMedGoogle Scholar
  38. 38.
    C. J. Peterson, V. A. Johnson, and P. J. Mattern, Evaluation in variation in mineral element concentrations in wheat flour and bran of different cultivars, Cereal Chem. 60, 450–455 (1983).Google Scholar
  39. 39.
    B. Sandstrom, B. Arvidsson, A. Cederblad, and E. Bjorn-Rasmussen, Zinc absorption from composite meals. 1. The significance of wheat extraction rate, zinc, calcium and protein content in meals based on bread, Am. J. Clin. Nutr. 33, 739 (1980).PubMedGoogle Scholar
  40. 40.
    J. R. Hunt, L. K. Johnson, and B. O. Juliano, Bioavailability of zinc from cooked Philippine milled, undermilled, and brown rice, as assessed in rats by using growth, bone zinc and zinc-65 retention, J. Agric. Food Chem. 50, 5229–5235 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    F. M. Anjum, M. S. Butt, N. Ahmad, and I. Ahmad, Phytate and mineral content in different milling fractions of some Pakistani spring wheats, Int. J. Food Sci. Technol. 37, 13–17 (2002).CrossRefGoogle Scholar
  42. 42.
    B. Demirozu, I. Saldamli, B. Gursel, A. Ucak, F. Cetinyokus, and N. Yuzbasi, Determination of some metals which are important for food quality control in bread J Cereal Sci. 37, 171–177 (2003).CrossRefGoogle Scholar
  43. 43.
    H. Karppanen, R. Pennanen, and L. Passinen, Minerals, coronary heart disease and sudden coronary death, Adv. Cardiol. 25, 9–24 (1978).PubMedGoogle Scholar
  44. 44.
    O. Muneyyirci-Delale, V. L. Nacharaju, M. Dalloul, et al., Divalent cations in women with PCOS: implications for cardiovascular disease, Gynecol. Endocrinol. 15, 198–201 (2001).PubMedGoogle Scholar
  45. 45.
    J. E. Laws, J. T. Latshan, and M. Biggert, Relative biological values of selenium. Feed experiment with chickens, Nutr. Rep. Int. 33, 13–24 (1986).Google Scholar
  46. 46.
    S. Ciappellano, G. Testolin, M. Allegrini, and M. Porrini, Availability of selenium in dough and biscuit in comparison to wheat meal, Ann. Nutr. Metab. 34, 343–349 (1990).PubMedCrossRefGoogle Scholar
  47. 47.
    J. W. Finley and C. D. Davis CD, Selenium from high-selenium broccoli is utilized differently than selenite, selenate and selenomethionine, but is more effective in inhibiting colon carcinogenesis. Biofactors 14, 191–196 (2001).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Graham H. Lyons
    • 1
  • Yusuf Genc
    • 2
  • James C. R. Stangoulis
    • 1
  • Lyndon T. Palmer
    • 1
  • Robin D. Graham
    • 1
  1. 1.School of Agriculture and WineUniversity of Adelaide-WaiteGlen OsmondAustralia
  2. 2.Molecular Plant breeding CRCGlen OsmondAustralia

Personalised recommendations