Biological Trace Element Research

, Volume 103, Issue 1, pp 1–15 | Cite as

Health effects of natural dust

Role of trace elements and compounds
  • A. G. Cook
  • P. Weinstein
  • J. A. Centeno
Review Article

Abstract

This article reviews the health effects of trace elements carried in natural dusts of geologic or geochemical origin. The sources of these dusts are diverse, including volcanoes, dust storms, long-range transport of desert dust, and displacement through natural processes such as landslides and earthquakes. The primary focus is dust exposures affecting communities rather than occupational groups (which have been comprehensively explored in other publications). The principal elements and compounds reviewed are trace metals (including As, Hg, Cd, and Fe), radioactive elements, fluoride, silicates, natural asbestiform compounds, and alkali salts. The pathways by which such agents affect human populations are explored, including carriage through water, air, soil, and the food chain. The mechanisms of biotoxicity and the acute and chronic consequences on health associated with these elements are described. The discussion explores problems inferring risk and disease causation from natural dust exposures using standard epidemiological indicators, particularly for chronic outcomes, and will argue for the importance of the ecological perspective in assessing pathogenesis. The authors stress the global scale of the problem, which remains underevaluated and underreported in terms of health implications.

Index Entries

Dusts trace elements respiratory disease cancer toxicology environmental epidemiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Moulin, C. E. Lambert, F. Dulac, and U. Dayan, Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation, Nature 387, 691–694 (1997).CrossRefGoogle Scholar
  2. 2.
    D. W. Griffin, C. A. Kellogg, and E. A. Shinn, Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health, Global Change Hum Health 2, 20–33 (2001).CrossRefGoogle Scholar
  3. 3.
    S. Rutherford, E. Clark, G. McTainsh, et al., Characteristics of rural dusts events shown to impact on asthma severity in Brisbane, Australia, Int. J. Metereol. 42, 217–225 (1999).Google Scholar
  4. 4.
    J. M. Prospero, Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States, Proc. Natl. Acad. Sci. USA 96(7), 3396–3403 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    P. F. Holt, Inhaled Dust and Disease, Wiley, Chichester (1987).Google Scholar
  6. 6.
    A. J. Ridgwell, Dust in the Earth system: the biogeochemical linking of land, air and sea, Phil. Trans. R. Soc. London, A 360(1801), 2905–2924 (2002).CrossRefGoogle Scholar
  7. 7.
    F. Grousset, P. Ginoux, A. Bory, and P. Biscaye, Case study of a Chinese dust plume reaching the French Alps, Geophys. Res. Lett. 30(6), 1277 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Moune, P. J. Gauthier, S. Gislason, et al., Trace elements mobility during degassing processes at Hekla (Iceland) and Masaya (Nicaragua) volcanoes, Geophys. Res. Abstr. 5, 3982 (2003).Google Scholar
  9. 9.
    D. Gillette, Soil derived dust as a source of silica: aerosol properties, emissions, deposition, and transport, J. Expo. Anal. Environ. Epidemiol. 7(3), 303–311 (1997).PubMedGoogle Scholar
  10. 10.
    R. J. van Klaveren and B. Nemery, Role of reactive oxygen species in occupational and environmental obstructive pulmonary diseases, Curr. Opin. Pulmonary Med. 5(2), 118–123 (1999).CrossRefGoogle Scholar
  11. 11.
    C. J. Horwell, I. Fenoglio, K. Vala Ragnarsdottir, et al., Surface reactivity of volcanic ash from the eruption of Soufriere Hills volcano, Montserrat, West Indies with implications for health hazards, Environ. Res. 93(2), 202–215 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Melloni, A. Vergnenegre, P. Lagrange, and F. Bonnaud, Household radon exposure, Rev. Malad. Respir. 17(6), 1061–1071 (2000).Google Scholar
  13. 13.
    S. R. Gomez, R. A. Parker, J. A. Dosman, et al., Respiratory health effects of alkali dust in residents near desiccated Old Wives Lake, Arch. Environ. Health 47(5), 364–369 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    P. Westerholm, Silicosis. Observations on a case register. Scand. J. Work Environ. Health 6(Suppl. 2), 1–86 (1980).PubMedGoogle Scholar
  15. 15.
    A. Ferrera and G. Faraone, Morphology and pathogenesis of pumice pneumoconiosis, Riv. Infort. Malattic. Prof. 40, 453 (1953).Google Scholar
  16. 16.
    A. Searl, A. Nicholl, P. J. Baxter, Assessment of the exposure of islanders to ash from the Soufriere Hills volcano, Montserrat, British West Indies, Occup. Environ. Med. 9(8), 523–531 (2002).CrossRefGoogle Scholar
  17. 17.
    T. Norboo, P. T. Angchuk, M. Yahya, et al., Silicosis in a Himalayan village population: role of environmental dust. Thorax 46(5), 341–343 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    H. N. Saiyed, Y. K. Sharma, H. G. Sadhu, et al., Non-occupational pneumonconiosis at high altitude villages in central Ladahk. Br. J. Ind. Med. 48(12), 825–829 (1991).PubMedGoogle Scholar
  19. 19.
    P. Kelleher, K. Pacheco, et al., Inorganic dust pneumonias: the metal-related parenchymal disorders, Environ. Health Perspect. 108(Suppl. 4), 685–696 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    L. S. Newman, Metals, in Occupational and Environmental Respiratory Disease, P. Harber, M. B. Schenker, and J. R. Blames, eds., Mosby, St. Louis, MO (1996).Google Scholar
  21. 21.
    R. Avila, Epidemiologic aspects of suberosis and vineyard sprayer's lung, Bronchopneumologie 20, 50–60 (1980).Google Scholar
  22. 22.
    L. S. Newman, K. Kreiss, T. E. King, Jr., et al., Pathologic and immunologic altercation in early stages beryllium disease: re-examination of disease definition and natural history. Am. Rev. Respir. Dis. 139, 1479–1486 (1989).PubMedGoogle Scholar
  23. 23.
    A. Funahashi, D. P. Schlueter, K. Pintar, et al., Welder's pneumoconiosis: tissue elemental microanalysis by energy dispersive x-ray analysis, Br. J. Ind. Med. 5, 14–18 (1988).Google Scholar
  24. 24.
    E. S. Gurzau, C. Neagu, E. A. Gurzau, Essential metals—case study on iron. Ecotoxicol Environ. Safety 56(1), 190–200 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    I. Baris, L. Simanato, M. Artvinlu, et al., Epidemiological and environmental evidence of the health effects of exposure to erionite fibers; a four-year study in the Cappadocian region of Turkey, Int. J. Cancer 39, 10–17 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Hillerdal, The pathogenesis of pleural plaques and pulmonary asbestosis: possibilities and impossibilities, Eur. J. Respir. Dis. 61, 129–138 (1980).PubMedGoogle Scholar
  27. 27.
    M. Neuberger, P. Ambrosch, and M. Kundi, Prevention of occupational cancer such as in the asbestos cement industry, Zentbl. Bakt. I Abt. Orig. B 181, 81–86 (1985).Google Scholar
  28. 28.
    M. Germine, Asbestos in play sand, New Engl. J. Med. 315, 89 (1986).Google Scholar
  29. 29.
    T. Burikov, L. Michaelova, Uber den Sepiolitgehalt des Bodens in Gebieten mit endmischen pleuraverkalkagungen, Int. Arch. Arbmed. 29, 95–101 (1972).CrossRefGoogle Scholar
  30. 30.
    V. Rapisarda, M. Amati, S. Coloccini, et al. The in vitro release of hydroxyl radicals from dust containing fluoro-edenite fibers identified in the volcanic rocks of Biancavilla (eastern Sicily), Med. Lavoro 94(2), 200–206 (2003).PubMedGoogle Scholar
  31. 31.
    P. Grandjean, O. Andersen, and G. D. Nielsen, Carcinogenicity of occupational nickel exposures: an evaluation of the epidemiologic evidence, Am. J. Ind. Med. 13, 193–209 (1988).PubMedCrossRefGoogle Scholar
  32. 32.
    International Agency for Research on Cancer (IARC), Evaluation of Carcinogenic Risk of Chemicals to Man, Volume 1, IARC, Lyon (1972).Google Scholar
  33. 33.
    H. E. Stockinger, A review of world literature finds iron oxide noncarcinogenic, Am. Ind. Hyg. Assoc. J. 45, 127–133 (1984).Google Scholar
  34. 34.
    I. Ebihara and M. Kawami, Mineral dust exposure and systemic diseases, J. Environ. Pathol. Toxicol. Oncol. 19(1–2), 109–127 (2000).PubMedGoogle Scholar
  35. 35.
    J. Augustin and R. Zejda, Cancer incidence and geochemical factors in the environment, Sci. Total Environ. 106(1–2), 155–163 (1991).PubMedCrossRefGoogle Scholar
  36. 36.
    J. A. Centeno, F. G. Mullick, P. B. Tchounwou, et al., Environmental pathology and medical geology, in Medical Geology, O. Selinus, ed., Academic, London (2004).Google Scholar
  37. 37.
    T. Watanabe, T. Kondo, S. Asanuma, et al., Endemic fluorosis in southern China: radiological findings, Nippon Igaku Hoshasen Gakkai Zasshi (Nippon Acta Radiol.) 57(7), 425–426 (1997).PubMedGoogle Scholar
  38. 38.
    Y. Haikel, J. C. Voegel, and R. M. Frank, Fluoride content of water, dust, soils and cereals in the endemic dental fluorosis area of Khouribga (Morocco), Arch. Oral Biol. 31(5), 279–286 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    S. J. Cronin, M. J. Hedley, V. E. Neall, et al., Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu volcano eruptions, New Zealand, Environ. Geol. 34(1), 21–30 (1998).CrossRefGoogle Scholar
  40. 40.
    G. Yang, K. Ge, J. Chen, and X. Chen, Selenium-related endemic diseases and the daily nutritional requirements of humans, World Rev. Nutr. Diet 55, 98–152 (1988).PubMedGoogle Scholar
  41. 41.
    P. Weinstein and A. Cook, Volcanic emissions and health, in Medical Geology, O. Selinus, ed., Academic, London (2004).Google Scholar
  42. 42.
    S. J. Cronin and D. S. Sharp, Environmental impacts on health from continuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu, Int. J. Environ. Health Res. 12(2), 109–123 (2002).PubMedCrossRefGoogle Scholar
  43. 43.
    V. Bencko and J. Vostal, Air pollution by solid particles and public health: when can we conclude on causality? Central Eur. J. Public Health 7(2), 63–66 (1999).Google Scholar
  44. 44.
    E. Derbyshire, Natural dust and pneumoconiosis in High Asia, in Geology and Health: Closing the Gap, H. C. W. Skinner and A. R. Berger, eds., Oxford University Press, New York (2003).Google Scholar
  45. 45.
    J. Douwes, P. Thorne, N. E. Pearce, et al., Bioaerosol health effects and exposure assessment: Progress and prospects, Ann. Occup. Hyg. 47, 187–200 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    J. L. Aron and J. Patz, Ecosystem Change and Public Health: A Global Perspective, John Hopkins University Press, Baltimore, MD (2001).Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • A. G. Cook
    • 1
  • P. Weinstein
    • 1
  • J. A. Centeno
    • 2
  1. 1.School of Population HealthUniversity of Western AustraliaCrawley
  2. 2.Armed Forces Institute of PathologyWashington, D.C.

Personalised recommendations