Biological Trace Element Research

, Volume 102, Issue 1–3, pp 245–263 | Cite as

Heavy metal and other trace elements in native mussel Diplodon chilensis from Nothern Patagonia Lakes, Argentina

  • S. Ribeiro Guevara
  • D. Bubach
  • P. Vigliano
  • G. Lippolt
  • M. Arribére
Original Articles


Native mussels, Diplodon chilensis, were sampled from four lakes in Nahuel Huapi National Park, Northern Patagonia, Argentina in order to evaluate heavy-metal distribution in the region and to assess the contribution of this compartment of the trophic web to their circulation in the food chain. The concentration of potential pollutants Ag, As, Cr, Hg, Sb, and Se, and other nine elements of interest (Ba, Br, Ca, Co, Cs, Fe, Na, Sr, and Zn) were determined in Diplodon chilensis pooled samples. Digestive glands were analyzed separately from soft tissues. Geological tracers Sc, Ta, Th, and rare earth elements were also determined in order to discriminate lithophile contributions. Elemental concentrations of Ba, Br, Fe, Sr, Se, and Zn in total soft tissues samples do not show significant differences among sampling sites. Arsenic and Cr contents in total soft tissues and digestive gland pooled samples are higher in sampling points close to zones with human settlements. Silver contents in samples collected in Lake Nahuel Huapi were higher than in the other lakes studied, and up to 50-fold higher than the sample collected in Lake Traful, considered as the reference. Mercury highest concentration values measured in total soft tissues pooled samples from lakes Nahuel Huapi and Moreno were found to be similar to those observed in other reported Hg contamination situations, and they are three to five times higher than those of the reference samples collected in Lake Traful.

Index Entries

Mussel, Diplodon chilensis heavy metal neutron activation analysis Nahuel Huapi National Park Patagonia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. H. Phillips, The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—a review, Environ. Pollut. 13, 281–317 (1997).Google Scholar
  2. 2.
    O. Cattani, D. Fabbri, M. Salvati, A. Trombini, and I. Vassura, Biomonitoring of mercury pollution in a wetland near Ravenna, Itally by translocated bivalves, Environ. Toxicol. Chem. 18(8), 1801–1805 (1999).CrossRefGoogle Scholar
  3. 3.
    C. R. Joiris, M. I. Azokwu, F. A. Otchere, and I. B. Ali, Mercury in the bivalve Anadara (Senilia) senilis from Ghana and Nigeria, Sci. Total Environ. 224, 181–188 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    C. R. Joiris, L. Holsbeek, and F. A. Otchere, Mercury in the bivalves Crassostrea tulipa and Perna perna from Ghana, Marine Pollut. Bull. 40(5), 457–460 (2000).CrossRefGoogle Scholar
  5. 5.
    N. Beckvar, S. Salazar, M. Salazar, and K. Finkelstein, An in situ assessment of mercury contamination in the Sudbury River, Massachusetts, using transplanted freshwater mussels (Elliptio complanata), Can. J. Fish. Aquat. Sci. 57, 1103–1112 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Costa, E. Paira, and I. Moreira, Total mercury in Perna perna mussels from Guanabara Bay—10 years later, Sci. Total Environ. 261, 69–73 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Haraguchi, T. Ando, M. Sato, et al., Detection of localized methylmercury contamination by use of the mussel adductor muscle in Minamata Bay and Kagoshima Bay, Japan, Sci. Total Environ. 261, 75–89 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Semenas and N. Brugni, Características poblacionales y ciclo de vida de Diplodon chilensis (d'Orbigny, 1835) (Hyruudae, Bivalvia) en el Lago Gutierrez, Patagonia, Argentina, Ecol. Austral 12(1), 29–40 (2002).Google Scholar
  9. 9.
    M. A. Bottini, Composición y distribución de la asociatión de moluscos bentónicos en la laguna La Patagua, Península de Quetrihu, Degree Final Work Report, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Argentina (1993).Google Scholar
  10. 10.
    C. Chehebar, Informe de dos campañas preliminares a la Península de Quetrihue, Parque Nacional Arrayanes, Dirección de Parques Nacionales, Argentina, (1982).Google Scholar
  11. 11.
    D. Bubach, A. Pechén de D'Angelo, S. Ribeiro Guevara, M. A. Arribére, A. Ferrari, and A. Venturino, Estudio de la evolución del mercurio en un sistema acuático de laboratorio multiespecífico utilizando Análisis por Activación Neutrónica Instrumental, Proceedings of the VII Congresso Geral de Energia Nuclear “Energia Nuclear e a Qualidade de Vida no Século XXI” (1999).Google Scholar
  12. 12.
    S. Ribeiro Guevara, J. Masaferro, G. Villarosa, and M. Arribére, Heavy metal contamination in sediments of Lake Nahuel Huapi, Nahuel Huapi National Park, Northern Patagonia, Argentina, Water Air Soil Pollut. 137, 21–44 (2002).CrossRefGoogle Scholar
  13. 13.
    J. Massaferro, CONICET, Argentina, personal communication, 1999.Google Scholar
  14. 14.
    M. Sato, K. Haraguchi, T. Ando, and H. Akagi, Distribution of total mercury and methylmercury in tissues of the mussel Mytilus galoprovincialis, Environ. Sci. 5, 225–237 (1997).Google Scholar
  15. 15.
    V. Catsiki, C. H. Katsilieri, and V. Gialamas, Chromium distribution in benthic species from a gulf receiving tannery wastes (Gulf of Geras-Lesbos Island, Greece), Sci. Total Environ. 145, 173–185 (1993).CrossRefGoogle Scholar
  16. 16.
    S. F. Mughabghab, M. Divadeenam, and N. E. Holden, Neutron Cross Sections, Vols. 1 and 2. Academic, New York (1981).Google Scholar
  17. 17.
    K. J. Tuli, Nuclear Wallet Cards, National Brookhaven Laboratory, Brookhaven, NY (2000).Google Scholar
  18. 18.
    R. B. Firestone, and V. Shirley, Table of Isotopes, Wiley, New York (1996).Google Scholar
  19. 19.
    S. Ribeiro Guevara, M. Arribére, S. Calvelo, and G. Román Ross, Elemental composition of lichens at Nahuel Huapi National Park, Patagonia, Argentina, J. Radioanal. Nucl. Chem. 198(2), 437–448 (1995).CrossRefGoogle Scholar
  20. 20.
    S. Riberio Guevara, A. Rizzo, R. Sánchez, and M. Arribére, Heavy metal inputs in Northern Patagonia lakes from short sediment cores analysis, Proceedings of the International Conference on Isotopic and Nuclear Analytical Techniques for Health and Environment, 10–13 June (2003).Google Scholar
  21. 21.
    J. H. Rodgers, Jr., E. Deaver, and M. Rogers, Evaluations of the bioavailability and toxicity of silver in sediment, in Transport, Fate and Effects of Silver in the Environment, Proceedings of the 2nd International Conference, A. W. Andren, T. W. Bober, J. R. Kramer, A. Sodergren, E. A. Crecelius, S. N. Luoma, and J. H. Rodgers, eds., University of Wisconsin Sea Grant Institute, Madison, (1994).Google Scholar
  22. 22.
    D. B. J. Connell, G. Sanders, G. F. Riedel, and G. R. Abbe, Pathways of silver uptake and trophic transfer in estuarine organisms, Environ. Sci. Technol. 25, 921–924 (1991).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • S. Ribeiro Guevara
    • 1
  • D. Bubach
    • 1
  • P. Vigliano
    • 2
  • G. Lippolt
    • 2
  • M. Arribére
    • 1
  1. 1.Laboratorio de Análisis por Activación NeutrónicaCentro Atómico BarilocheBarilocheArgentina
  2. 2.Grupo de Evaluación y Manejo de Recursos ÍcticosUniversidad Nacional del ComahueBarilocheArgentina

Personalised recommendations