Advertisement

Biological Trace Element Research

, Volume 102, Issue 1–3, pp 19–25 | Cite as

Chromium and manganese levels in the scalp hair of normals and patients with breast cancer

  • Eser Kilic
  • Recep Saraymen
  • Asuman Demiroglu
  • Engin Ok
Original Articles

Abstract

The adverse health effects linked with chromium and manganese and the diverse cellular and molecular effects of chromium and manganese make the study of chromium and manganese carcinogenesis and toxicology very interesting and complex. Quantitative elemental analysis of scalp hair of breast cancer patients (stage III) (n=26) and controls (n=27) were used to study to find correlation and possible changes between breast cancer and healthy controls. The graphite furnace atomic absorption analysis of quantitative method was used for the determination of chromium and manganese element levels. Comparison of mean elemental contents of the breast cancer patients with controls shows a significant enhancement of chromium (p<0.05) but declining trends for manganase (p<0.05) in breast cancer patients. Changes in element content in hair can serve as a guide to opening up new vistas in the treatment of breast cancer on the basis of an overall analysis of symptoms and signs.

Index Entries

Breast cancer scalp hair chromium manganese graphite furnace atomic absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Katz and A. Chat, Hair Analysis: Applications in the Biomedical and Environmental Sciences VCH, Weinheim, p. 133 (1988).Google Scholar
  2. 2.
    C. S. Poten, P. A. Burt, S. A. Roberts, N. A. Deshpande, P. C. Williams, and J. Ramsden, Changes in the cellularity of the cortex of human hairs as an indicator of radiation exposure, Radiat. Environ. Biophys. 35, 121–125 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Howell, J. G. Grossmann, K. C. Cheung, L. Kanbi, D. G. Evans, and S. S. Hasnain, Can hair be used to screen for breast cancer? J. Med. Genet. 37, 297–298 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Sukumai, Factors influencing levels of trace elements in human hair, Rev. Environ. Contam. Toxicol. 175, 47–78 (2002).Google Scholar
  5. 5.
    W. H. Strain, L. T. Steadman, C. A. Lankau, W. P. Berliner, Jr., and Berliner, W. J. Pories, Analysis of zinc levels in hair for the diagnosis of zinc deficiency in man, J. Lab. Clin. Med. 68, 244–249 (1966).PubMedGoogle Scholar
  6. 6.
    L. Kopito and H. Shwachman, All this lead [letter], Arch. Environ. Health 29, 296 (1974).PubMedGoogle Scholar
  7. 7.
    D. E. Ryan, J. Holzbecher, and D. C. Stuart, Trace elements in scalp-hair of persons with multiple sclerosis and of normal individuals, Clin. Chem. 24, 1996–2000 (1978).PubMedGoogle Scholar
  8. 8.
    I. D. Capel, M. H. Pinnock, H. M. Dorrell, D. C. Williams, and E. C. Grant, Comparison of concentrations of some trace, bulk, and toxic metals in the hair of normal and dyslexic children, Clin. Chem. 27, 9–81 (1981).Google Scholar
  9. 9.
    B. X. Huang, S. Q. Lin, S. Y. Chen, G. Zhou, F. Yin, and Z. P. Lou, Hair chromium levels in patients with vascular diseases, Biol Trace Element Res. 29, 133–137 (1991).CrossRefGoogle Scholar
  10. 10.
    N. Miekeley, L. M. de Fortes Carvalho, C. L. Porto da Silveira, and M. B. Lima, Elemental anomalies in hair as indicators of endocrinologic pathologies and deficiencies in calcium and bone metabolism, J. Trace Elements Med. Biol. 15, 46–55 (2001).CrossRefGoogle Scholar
  11. 11.
    H. V. Kobla and S. L. Volpe, Chromium, exercise, and body composition, Crit. Rev. Food Sci. Nutr. 40, 291–308 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    F. Chen, V. Vallyathan, V. Castranova, and X. Shi, Cell apoptosis induced by carcinogenic metals, Mol. Cell. Biochem. 222, 183–188 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    G. B. Gerber, A. Leonard, and P. Hantson, Carcinogenicity, mutagenicity and teratogenicity of manganese compounds, Crit. Rev. Oncol. Hematol. 42, 25–34 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Azin, R. M. Raie, and M. M. Mahmoudi, Correlation between the levels of certain carcinogenic and anticarcinogenic trace elements and esophageal cancer in northern Iran, Ecotoxicol. Environ. Safety 39, 179–184 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    L. R. K. Kopito, H. Byers, and H. Schwachman, Lead in hair of children with chronic lead poisoning, N. Eng. J. Mech. 276, 949–953 (1967).CrossRefGoogle Scholar
  16. 16.
    H. A. Scoble and R. Litman, Prepartion hair and nail samples for trace element analysis. Anal. Lett. 2, 183 (1978).Google Scholar
  17. 17.
    N. Limic and V. Valkovic, Environmental influence on trace element levels in human hair, Bull. Environ. Contam. Toxicol. 37, 925–930 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    K. D. Sugden and D. M. Stearns, The role of chromium(V) in the mechanism of chromate-induced oxidative DNA damage and cancer, J. Environ. Páthol. Toxicol. Oncol. 19, 215–230 (2000).PubMedGoogle Scholar
  19. 19.
    D. Beyersmann, Interactions in metal carcinogenicity, Toxicol. Lett. 72, 333–338 (1994).PubMedCrossRefGoogle Scholar
  20. 20.
    P. L. Leung and H. M. Huang, Analysis of trace elements in the hair of volunteers suffering from naso-pharyngeal cancer, Biol. Trace. Element Res. 57, 19–25 (1997).Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Eser Kilic
    • 1
  • Recep Saraymen
    • 1
  • Asuman Demiroglu
    • 3
  • Engin Ok
    • 2
  1. 1.Department of Biochemistry and Clinical BiochemistryErciyes UniversityKayseriTurkey
  2. 2.Department of General Surgery, Medical FacultyErciyes UniversityKayseriTurkey
  3. 3.Department of BiologyGebze Institute of TechnologyGebzeTurkey

Personalised recommendations