Applied Biochemistry and Biotechnology

, Volume 98, Issue 1–9, pp 699–716

Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents

  • Carlos Martín
  • Mats Galbe
  • Nils-Olof Nilvebrant
  • Leif J. Jönsson


Sugarcane bagasse is a potential lignocellulosic feedstock for ethanol production, since it is cheap, readily available, and has a high carbohydrate content. In this work, bagasse was subjected to steam explosion pretreatment with different impregnation conditions. Three parallel pretreatments were carried out, one without any impregnation, a second with sulfur dioxide, and a third with sulfuric acid as the impregnating agent. The pretreatments were performed at 205°C for 10 min. The pretreated material was then hydrolyzed using celluloytic enzymes. The chemical composition of the hydrolyzates was analyzed. The highest yields of xylose (16.2 g/100 g dry bagasse), arabinose (1.5 g/100 g), and total sugar (52.9 g/100 g) were obtained in the hydrolysis of the SO2-impregnated bagasse. The H2SO4-impregnated bagasse gave the highest glucose yield (35.9 g/100 g) but the lowest total sugar yield (42.3 g/100 g) among the three methods. The low total sugar yield from the H2SO4-impregnated bagasse was largely due to by-product formation, as the dehydration of xylose to furfural. Sulfuric acid impregnation led to a three-fold increase in the concentration of the fermentation inhibitors furfural and 5-hydroxymethylfurfural (HMF) and a two-fold increase in the concentration of inhibitory aliphatic acids (formic, acetic, and levulinic acids) compared to the other two pretreatment methods. The total content of phenolic compounds was not strongly affected by the different pretreatment methods, but the quantities of separate phenolic compounds were widely different in the hydrolyzate from the H2SO4-impregnated bagasse compared with the other two hydrolyzates. No major differences in the content of inhibitors were observed in the hydrolyzates obtained from SO2-impregnated and non-impregnated bagasse. The fermentability of all three hydrolyzates was tested with a xylose-utilizing Saccharomyces cerevisiae strain with and without nutrient supplementation. The hydrolyzates of SO2-impregnated and nonimpregnated bagasse showed similar fermentability, whereas the hydrolyzate of H2SO4-impregnated bagasse fermented considerably poorer.

Index Entries

Sugarcane bagasse ethanol pretreatment S. cerevisiae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Larsson S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N-O. (1999), Enzyme Microb. Technol. 24, 151–159.CrossRefGoogle Scholar
  2. 2.
    Teixeira, L.C., Linden, J.C., and Schroeder, H.A. (1999), Renewable Energy 16, 1070–1073.CrossRefGoogle Scholar
  3. 3.
    van Walsum, G.P., Allen, S.G., Spencer, M.J., Laser, M.S., Antal, M-J., and Lynd, L.R. (1996), Appl. Biochem. Biotechnol. 57–58, 157–170.Google Scholar
  4. 4.
    Kaar, W. E., Gutierrez, C. V., and Kinoshita, C. M. (1998), Biomass Bioenergy 14, 277–287.CrossRefGoogle Scholar
  5. 5.
    Saddler, J., Ramos, L., and Breul, C. (1993), in Bioconversion of Forest and Agricultural Residues, Saddler, J. N., ed., CAB International, Wallingford, pp. 73–91.Google Scholar
  6. 6.
    Gregg, D. and Saddler, J. N. (1996), Appl. Biochem. Biotechnol. 57–58, 711–727.Google Scholar
  7. 7.
    Stenberg, K., Tengborg, C., Galbe, M., and Zacchi, G. (1998), J. Chem. Technol. Biotechnol. 71, 299–308.CrossRefGoogle Scholar
  8. 8.
    Morjanoff, P. J. and Gray, P. P. (1987), Biotechnol. Bioeng. 29, 733–741.CrossRefGoogle Scholar
  9. 9.
    Fox, D. J., Morjanoff, P. J., Gray, P. P., Dunn, N. W., and Marsden, W. L. (1990), Aust. J. Biotechnol. 4, 1, 22–25.Google Scholar
  10. 10.
    Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1996), Enzyme Microb. Technol. 19, 6, 470–476.CrossRefGoogle Scholar
  11. 11.
    Martín, C., Wahlbom, F., Galbe, M., Jönsson, L. J., and Hahn-Hägerdal, B. (2001), Proceedings of the 6th Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. VIII, Guaratingueta, S.P., Brazil, pp. 361–367.Google Scholar
  12. 12.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1996), Enzyme Microb. Technol. 19, 220–225.CrossRefGoogle Scholar
  13. 13.
    Jönsson L. J., Palmqvist E., Nilvebrant N.-O., and Hahn-Hägerdal B. (1998), Appl. Microbiol. Biotechnol. 49, 691–697.CrossRefGoogle Scholar
  14. 14.
    Zaldívar, J. and Ingram, L. O. (1999), Biotechnol. Bioeng. 66, 203–210.CrossRefGoogle Scholar
  15. 15.
    Larsson S., Quintana-Sáinz, A., Reimann A., Nilvebrant N.-O., and Jönsson L.J. (2000), Appl. Biochem. Biotechnol. 84–86, 617–632.CrossRefGoogle Scholar
  16. 16.
    Larsson S., Reimann A., Nilvebrant N.-O., and Jönsson L.J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.CrossRefGoogle Scholar
  17. 17.
    Palmqvist, E. and Hahn-Hägerdal, B. (2000), Bioresour. Technol. 74, 17–24.CrossRefGoogle Scholar
  18. 18.
    Larsson, S. (2000), Ph D thesis, Lund University, Sweden.Google Scholar
  19. 19.
    Martín, C., Galbe, M., Wahlbom, F., Hahn-Hägerdal, B, and Jönsson, L. J. (unpublished).Google Scholar
  20. 20.
    Hägglund, E. (1951), Chemistry of Wood, Academic Press, NY.Google Scholar
  21. 21.
    Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson S., Palmqvist, E., and Hahn-Hägerdal, B. (1998), Appl. Biochem. Biotechnol. 70–72, 3–15.Google Scholar
  22. 22.
    Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–23.Google Scholar
  23. 23.
    Berghem, L. E. R. and Pettersson, L. G. (1974), Eur. J. Biochem. 46, 295–305.CrossRefGoogle Scholar
  24. 24.
    Eliasson, A., Christensson, C., Wahlbom, C. F., and Hahn-Hägerdal, B. (2000) Appl. Environ. Microbiol. 66, 3381–3386.CrossRefGoogle Scholar
  25. 25.
    Verduyn, C., Postma, E., Scheffers, W. A., and van Dijken, J.P. (1992) Yeast 8, 501–517.CrossRefGoogle Scholar
  26. 26.
    Singleton, V., Orthofer, R., and Lamuela-Raventós, R. (1999) Meth. Enzymol. 299, 152–178.Google Scholar
  27. 27.
    Sjöström, E. (1993) Wood Chemistry. Fundamentals and Applications, Academic Press, San Diego, CA.Google Scholar
  28. 28.
    Taherzadeh, M. J., Niklasson, C., and Lidén, G. (1997) Chem. Eng. Sci. 52, 15,2653–15,2659.Google Scholar
  29. 29.
    Sánchez, B. and Bautista, J. (1988) Enzyme Microb. Technol. 10, 315–318.CrossRefGoogle Scholar
  30. 30.
    Taherzadeh, M.J., Gustafsson, L., Niklasson, C., and Lidén, G. (1999) J. Biosci. Bioeng. 87, 169–174.CrossRefGoogle Scholar
  31. 31.
    Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Lidén, G. (2000) Appl. Microbiol. Biotechnol. 53, 701–708.CrossRefGoogle Scholar
  32. 32.
    Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., and Lidén, G. (1997) Ind. Eng. Chem. Res. 36, 4659–4665.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Carlos Martín
    • 1
    • 2
  • Mats Galbe
    • 3
  • Nils-Olof Nilvebrant
    • 4
  • Leif J. Jönsson
    • 1
    • 5
  1. 1.Applied MicrobiologyLund University/Institute of TechnologyLundSweden
  2. 2.Department of Chemistry and Chemical EngineeringUniversity of MatanzasMatanzasCuba
  3. 3.Chemical Engineering ILund University/Institute of TechnologyLundSweden
  4. 4.STFI, Swedish Pulp and Paper Research InstituteStockholmSweden
  5. 5.Division for ChemistryKarlstad UniversityKarlstadSweden

Personalised recommendations