Applied Biochemistry and Biotechnology

, Volume 98, Issue 1–9, pp 687–698 | Cite as

Production of 1,3-propanediol by Klebsiella pneumoniae

Article

Abstract

1,3-Propanediol (1,3-PD) has numerous applications from polymers to cosmetics, foods, lubricants, and medicines. Recently, there are strong industrial interests in a new kind of polyester, polytrimethylene terephthalate, with 1,3-PD as a monomer. This new polyester shows significant promise for use in carpeting and textiles. In this article we introduce a mild aerobic fermentation process using a strain screened from Klebsiella pneumoniae ATCC 25955, which is insensitive to oxygen, to produce 1,3-PD. We also describe a two-step fermentation process starting with glucose that was converted into glycerol with a glycerol-producing yeast, followed by K. pneumoniae that converts glycerol into 1,3-PD without intermediate isolation and purification of glycerol.

Index Entries

1,3-Propanediol glycerol Klebsiella pneumoniae yeast fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Potera, C. (1997), Genet. Eng. News 17(11), 19.Google Scholar
  2. 2.
    Beshouri, S. M., Brown, H. S., and Chuah, H. H., et al. (1999), Ploym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 40(1), 569.Google Scholar
  3. 3.
    Sullivan, C. J. (1993), in Ullmann’s Encyclopedia of Industrial Chemistry, vol. A22, Elvers, B., ed., VCH Publishers, NY, pp. 163–171.Google Scholar
  4. 4.
    Stinson, S. C. (1995), Chem. Eng. News 17, 10–14.Google Scholar
  5. 5.
    Cameron, D. C., Altaras, N. E., Hoffman, M. L., and Shaw, A. J. (1998), Biotechnol. Prog. 14, 116–125.CrossRefGoogle Scholar
  6. 6.
    Lin, E. C. C. (1976), Annu. Rev. Microbiol. 30, 535–578.CrossRefGoogle Scholar
  7. 7.
    Johnson, E. A. and Lin, E. C. C. (1987), J. Bacteriol. 169, 2050–2054.Google Scholar
  8. 8.
    Schneider, Z. and Pawelkkiewicz, J. (1996), Acta Biochimica Polonica. Pol. 13, 311–328.Google Scholar
  9. 9.
    Forage, R. G. and Foster, M. A. (1982), J. Bacteriol. 149(2), 413–419.Google Scholar
  10. 10.
    Streekstra, H., Teixeira de Mattos, M. J., Neijssel, O. M., and Tempest, D. S. (1987), Arch. Microbiol. 147, 268–275.CrossRefGoogle Scholar
  11. 11.
    Tong, I. and Cameron, D. C. (1992), Appl. Biochem. Biotechnol. 34/35, 149–159.Google Scholar
  12. 12.
    Gong, C. S., Du, J. X., Cao, N. J., and Tsao, G. T. (2000), Appl. Biochem. Biotechnol. 84–86, 543–559.CrossRefGoogle Scholar
  13. 13.
    Toraya, T., Honda, S., Kuno, S., and Fukui, S. (1978), J. Bacteriol. 135(2), 726–729.Google Scholar
  14. 14.
    Honda, S., Toraya, T., and Fukui, S. (1980), J. Bacteriol. 143, 1458–1465.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.School of Chemical Engineering and Laboratory of Renewable Resources EngineeringPurdue UniversityWest Lafayette

Personalised recommendations