Advertisement

Applied Biochemistry and Biotechnology

, Volume 98, Issue 1–9, pp 577–589 | Cite as

Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from d-glucose

  • Gerhard Mayer
  • Klaus D. Kulbe
  • Bernd NidetzkyEmail author
Article

Abstract

The production of xylitol from d-glucose occurs through a three-step process in which d-arabitol and d-xylulose are formed as the first and second intermediate product, respectively, and both are obtained via microbial bioconversion reactions. Catalytic hydrogenation of d-xylulose yields xylitol; however, it is contaminated with d-arabitol. The aim of this study was to increase the stereoselectivity of the d-xylulose reduction step by using enzymatic catalysis. Recombinant xylitol dehydrogenase from the yeast Galactocandida mastotermitis was employed to catalyze xylitol formation from d-xylulose in an NADH-dependent reaction, and coenzyme regeneration was achieved by means of formate dehydrogenase-catalyzed oxidation of formate into carbon dioxide. The xylitol yield from d-xylulose was close to 100%. Optimal productivity was found for initial coenzyme concentrations of between 0.5 and 0.75 mM. In the presence of 0.30 M (45 g/L) d-xylulose and 2000 U/L of both dehydrogenases, exhaustive substrate turnover was achieved typically in a 4-h reaction time. The enzymes were recovered after the reaction in yields of approx 90% by means of ultrafiltration and could be reused for up to six cycles of d-xylulose reduction. The advantages of incorporating the enzyme-catalyzed step in a process for producing xylitol from d-glucose are discussed, and strategies for downstream processing are proposed by which the observed coenzyme turnover number of approx 600 could be increased significantly.

Index Entries

Xylitol coenzyme regeneration optimization biocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998), Bioresour. Technol. 65, 191–201.CrossRefGoogle Scholar
  2. 2.
    Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998), Bioresour. Technol. 65, 203–212.CrossRefGoogle Scholar
  3. 3.
    Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998), Bioresour. Technol. 66, 25–40.CrossRefGoogle Scholar
  4. 4.
    Meinander, N. Q. and Hahn-Hägerdal, B. (1997), Biotechnol. Bioeng. 54, 391–399.CrossRefGoogle Scholar
  5. 5.
    Roca, E., Meinander, N., and Hahn-Hägerdal, B. (1996), Biotechnol. Bioeng. 51, 317–326.CrossRefGoogle Scholar
  6. 6.
    Onishi, H. and Suzuki, T. (1969), Appl. Microbiol. 18, 1031–1035.Google Scholar
  7. 7.
    Leleu, J. -B., Duflot, P., and Caboche, J. -J. (1993), US patent no. US005096820.Google Scholar
  8. 8.
    Wong, B., Murray, J. S., Castellanos, M., and Croen, K. D. (1993), J. Bacteriol. 175, 6314–6320.Google Scholar
  9. 9.
    Suzuki, S., Sugiyama, M., Mori, M., Mihara, Y., and Yokozeki, K. (2000), European patent no. EP1026255A1.Google Scholar
  10. 10.
    Sugiyama, M., Suzuki, S., Mihara, Y., Hashiguchi, K., and Yokozeki, K. (2000), European patent no. EP1026254A1.Google Scholar
  11. 11.
    Lunzer, R., Mamnun, Y., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1998), Biochem. J. 336, 91–99.Google Scholar
  12. 12.
    Lunzer, R., Ortner, I., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1998), Biocat. Biotrans. 16, 333–349.Google Scholar
  13. 13.
    Habenicht, A., Motejadded, H., Kiess, M., Wegerer, A., and Mattes, R. (1999), Biol. Chem. 380, 1405–1411.CrossRefGoogle Scholar
  14. 14.
    Schütte, H., Flossdorf, J., Sahm, H., and Kula, M. -R. (1976), Eur. J. Biochem. 62, 155–160.CrossRefGoogle Scholar
  15. 15.
    Slatner, M., Nidetzky, B., and Kulbe, K. D. (1999), Biochemistry 38, 10,489–10,498.CrossRefGoogle Scholar
  16. 16.
    Nidetzky, B., Neuhauser, W., Haltrich, D., and Kulbe, K. D. (1996), Biotechnol. Bioeng. 52, 387–396.CrossRefGoogle Scholar
  17. 17.
    Kragl, U., Vasic-Racki, D., and Wandrey, C. (1996), Bioprocess Eng. 14, 291–297.Google Scholar
  18. 18.
    Osawa, T., Harada, T., and Osamu, T. (2000), Top. Catal. 13, 155–168.CrossRefGoogle Scholar
  19. 19.
    Mohr, T., Schwarz, E., and Mackert, P.-J. (2001), World patent no. W01/00550A1.Google Scholar
  20. 20.
    Makkee, M., Kieboom, A. P. G., and van Bekkum, H. (1985), Starch 37, 136–141.CrossRefGoogle Scholar
  21. 21.
    Seelbach, K. and Kragl, U. (1997), Enzyme Microb. Technol. 20, 212–235.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Gerhard Mayer
    • 1
  • Klaus D. Kulbe
    • 1
  • Bernd Nidetzky
    • 1
    Email author
  1. 1.Division of Biochemical EngineeringInstitute of Food Technology, University of Agricultural Sciences ViennaViennaAustria

Personalised recommendations