Advertisement

Applied Biochemistry and Biotechnology

, Volume 98, Issue 1–9, pp 497–507 | Cite as

Purification and characterization of a laccase from the white-rot fungus Trametes multicolor

  • Christian Leitner
  • Johann Hess
  • Christiane Galhaup
  • Roland Ludwig
  • Bernd Nidetzky
  • Klaus D. Kulbe
  • Dietmar Haltrich
Article

Abstract

The wood-degrading fungus Trametes multicolor secretes several laccase isoforms when grown on a simple medium containing copper in the millimolar range for stimulating laccase synthesis. The main isoenzyme laccase II was purified to apparent homogeneity from the culture supernatant by using anion-exchange chromatography and gel filtration. Laccase II is a monomeric glycoprotein with a molecular mass of 63 kDa as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis, contains 18% glycosylation, and has a pI of 3.0. It oxidizes a variety of phenolic substrates as well as ferrocyanide and iodide. The pH optimum depends on the substrate employed and shows a bell-shaped pH activity profile with an optimum of 4.0 to 5.0 for the phenolic substrates, while the nonphenolic substrates ferrocyanide and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate) show a monotonic pH profile with a rate decreasing with increasing pH.

Index entries

Trametes multicolor basidiomycete laccase polyphenol oxidase lignin degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, F. (1996), Appl. Biochem. Biotechnol. 59, 221–230.Google Scholar
  2. 2.
    Reinhammar, B. R. M. (1984), in Copper Proteins and Copper Enzymes, vol. 3, Lontie, R., ed., CRC Press, Boca Raton, FL, pp. 1–35.Google Scholar
  3. 3.
    Thurston, C. F. (1994), Microbiology 140, 19–26.Google Scholar
  4. 4.
    Eggert, C., Temp, U., and Eriksson, K. -E. L. (1996), ACS Symp. Ser. 655, 130–150.Google Scholar
  5. 5.
    Solomon, E. I., Sundaram, U. M., and Machonkin, T. E. (1996), Chem. Rev. 96, 2563–2605.CrossRefGoogle Scholar
  6. 6.
    Yoshida, H. (1983), J. Chem. Soc. 43, 472–486.Google Scholar
  7. 7.
    Mayer, A. M. and Harel, E. (1979), Phytochemistry 18, 193–215.CrossRefGoogle Scholar
  8. 8.
    Mayer, A. M. (1987), Phytochemistry 26, 11–20.CrossRefGoogle Scholar
  9. 9.
    Gianfreda, L., Xu, F. and Bollag, J.-M. (1999), Biorem. J. 3, 1–25.CrossRefGoogle Scholar
  10. 10.
    Youn, H.-D., Hah, Y. C., and Kang, S.-O. (1995), FEMS Microbiol. Lett. 132, 183–188.CrossRefGoogle Scholar
  11. 11.
    Henson, J. M., Butler, M. J., and Day, A. W. (1999), Ann. Rev. Phytopathol. 37, 447–471.CrossRefGoogle Scholar
  12. 12.
    Wood, D. A. (1980), J. Gen. Microbiol. 117, 339–345.Google Scholar
  13. 13.
    Zhao, J. and Kwan, H. S. (1999), Appl. Environ. Microbiol. 65, 4908–4913.Google Scholar
  14. 14.
    Bar-Nun, N., Tal-Lev, A., Harel, E., and Mayer, A. M. (1988), Phytochemistry 27, 2505–2509.CrossRefGoogle Scholar
  15. 15.
    Rigling, D. and van Alfen, N. K. (1993), Appl. Environ. Microbiol. 59, 3634–3636.Google Scholar
  16. 16.
    Bollag, J. -M. and Leonowicz, A. (1984), Appl. Environ. Microbiol. 48, 849–854.Google Scholar
  17. 17.
    Schlosser, D., Grey, R., and Fritsche, W. (1997), Appl. Microbiol. Biotechnol. 47, 412–418.CrossRefGoogle Scholar
  18. 18.
    Xu, F. (1999), in Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, vol. 3, Flickinger, M. C. and Drew S. W., eds., Wiley, NY, pp. 1545–1554.Google Scholar
  19. 19.
    Slomczynski, D., Nakas, J. P., and Tanenbaum, S. W. (1995), Appl. Environ. Microbiol. 61, 907–912.Google Scholar
  20. 20.
    Yaropolov, A. I., Skorobogat’ko, O. V., Vartanov, S. S., and Varfolomeyev, S. D. (1994), Appl. Biochem. Biotechnol. 49, 257–280.Google Scholar
  21. 21.
    Galhaup, C. and Haltrich, D. (2001), Appl. Microbiol. Biotechnol. 56, 225–232.CrossRefGoogle Scholar
  22. 22.
    Muñoz, C., Guillén, F., Martínez, A. T., and Martínez, M. J. (1997), Appl. Environ. Microbiol. 63, 2166–2174.Google Scholar
  23. 23.
    Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  24. 24.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
  25. 25.
    Laemmli, U. K. (1970), Nature (Lond) 227, 680–685.CrossRefGoogle Scholar
  26. 26.
    Coll, P. M., Fernández-Abalos, J. M., Villanueva, J. R., Santamaría, R., and Pérez, P. (1993), Appl. Environ. Microbiol. 59, 2607–2613.Google Scholar
  27. 27.
    Shin, K.-S. and Kim, C.-J. (1998), Biotechnol. Tech. 112, 101–104.Google Scholar
  28. 28.
    Koroljova-Skorobogatko, O. V., Stepanova, E. V., Gavrilova, V. P., Morozova, O. V., Lubimova, N. V., Dzchafarova, A. N., Jaropolov, A. I., and Makower, A. (1998), Biotechnol. Appl. Biochem., 28, 47–54.Google Scholar
  29. 29.
    Koroljova-Skorobogat’ko, O. V., Stepanova, E. V., Gavrilova, V. P., Biniukov, V. I., Jaropolov, A. I., Varfolomeyev, S. D., Scheller, F., Makower, A., and Otto, A. (1999), Appl. Biochem. Biotechnol. 76, 115–127.CrossRefGoogle Scholar
  30. 30.
    Bailey, J. E., and Ollis, D. F. (1986), Biochemical Engineering Fundamentals, McGraw-Hill, NY.Google Scholar
  31. 31.
    Xu, F. (1997), J. Biol. Chem. 272, 924–928.Google Scholar
  32. 32.
    Gromov, I., Marchesini, A., Farver, O., Pecht, I., and Goldfarb, D. (1999), Eur. J. Biochem. 266, 820–830.CrossRefGoogle Scholar
  33. 33.
    Koudelka, G. B. and Ettinger, M. J. (1988), J. Biol. Chem. 263, 3698–3705.Google Scholar
  34. 34.
    Xu, F. (1996), Biochemistry 35, 7608–7614.CrossRefGoogle Scholar
  35. 35.
    Naqui, A. and Varfolomeev, S. D. (1980), FEBS Lett. 113, 157–160.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Christian Leitner
    • 1
  • Johann Hess
    • 1
  • Christiane Galhaup
    • 1
    • 2
  • Roland Ludwig
    • 1
  • Bernd Nidetzky
    • 1
  • Klaus D. Kulbe
    • 1
  • Dietmar Haltrich
    • 1
    • 2
  1. 1.Division of Biochemical Engineering, Institute of Food TechnologyUniversity of Agricultural Sciences ViennaViennaAustria
  2. 2.Wood Composite and Chemistry Center Austria (Wood Kplus), Area 1ViennaAustria

Personalised recommendations