Advertisement

Applied Biochemistry and Biotechnology

, Volume 98, Issue 1–9, pp 449–458 | Cite as

Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii

  • Luis F. Figueiredo Faria
  • Maria Antonieta P. Gimenes
  • Ronaldo Nobrega
  • Nei PereiraJr.
Article

Abstract

Oxygen availability is the most important environmental parameter in the production of xylitol by yeasts, directly affecting yields and volumetric productivity. This work evaluated the cell behavior in fermentations carried out with different dissolved oxygen concentrations (0.5–30.0% of saturation), as well as a limited oxygen restriction (0% of saturation), at several oxygen volumetric transfer coefficients (12 ≤ k L a ≤ 70 h−1). These experiments allowed us to establish the specific oxygen uptake rate limits to ensure high yields and volumetric productivity. When oxygen availability was limited, the specific oxygen uptake rate values were between 12 and 26 mg of O2/of g cell·h, resulting in a yield of 0.71 g of xylitol/xylose consumed, and 0.85 g/[L·h] for the volumetric productivity. According to the results, the effective control of the specific oxygen uptake rate makes it possible to establish complete control over this fermentative process, for both cell growth and xylitol production.

Index Entries

Xylitol xylose aeration Candida guilliermondii oxygen availability 

Nomenclature

Cox*

saturated DO concentration (mg of O2/L)

Cox

DO concentration (mg of O2/L)

kLa

volumetric oxygen transfer coefficient h−1

P

product: Extracellular xylitol (g/L)

qO2

specific oxygen uptake rate, mg O2 / (g cell·h)

S

substrate: xylose (g/L)

X

cells (g/L)

YP/S

xylitol yield coefficient (g of xylitol/g of xylose)

YX/S

cell mass yield coefficient (g of cells/g of xylose)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., and Lee, H. (1988), J. Ind. Microbiol. 3, 241–251.CrossRefGoogle Scholar
  2. 2.
    Silva, S. S. (1994), DS thesis, University of São Paulo, São Paulo, Brazil.Google Scholar
  3. 3.
    Sá, M.C.A. (1993), MS thesis, Federal University of Rio de Janeiro/EQ, Rio de Janeiro, Brazil.Google Scholar
  4. 4.
    Horitsu, H., Yahasi, Y., Takamizawa, K., Kawai, K., Suzuki, T., and Watanabe, N. (1992), Biotechnol. Bioeng. 40, 1085–1091.CrossRefGoogle Scholar
  5. 5.
    Nolleau, V., Preziosi-Belloy, L., and Navarro, J.M. (1995), Biotechnol. Lett. 17, 417–422.CrossRefGoogle Scholar
  6. 6.
    Felipe, M. G. A., Vitolo, M., Mancilha, I. M., and Silva, S. S. (1997), J. Ind. Microbiol. & Biotechnol. 18, 251–254.CrossRefGoogle Scholar
  7. 7.
    Du Preez, J. C. (1994), Enzyme Microb. Technol. 16, 944–956.CrossRefGoogle Scholar
  8. 8.
    Aguiar, Jr, W. B. (1998), MS thesis, Federal University of Rio de Janeiro/EQ, Rio de Janeiro, Brazil.Google Scholar
  9. 9.
    Faria, L.F.F. (2000), DS. thesis, Federal University of Rio de Janeiro/COPPE, Rio de Janeiro, Brazil.Google Scholar
  10. 10.
    Hahn-Hargerdal, B., Jeppsson, H., Skoog, K., and Prior, B.A. (1994), Enzyme Microb. Technol. 16, 933–943.CrossRefGoogle Scholar
  11. 11.
    Du Preez, J. C. and Van Der Walt, J. P. (1983), Biotechnol. Lett. 6, 395–400.Google Scholar
  12. 12.
    Pereira Jr., N. (1991), PhD thesis, The University of Manchester, UK.Google Scholar
  13. 13.
    Moser, A. (1988), Bioprocess Technology — Kinetics and Reactors, Springer-Verlag, NY.Google Scholar
  14. 14.
    Voet, D. and Voet, J. G. (1995), Biochemistry, John Wiley & Sons, NY.Google Scholar
  15. 15.
    Ojamo, H. (1994). DS thesis, Helsinki University of Technology, Espoo, Filand.Google Scholar
  16. 16.
    Faria, L. F. F., Pereira Jr., N., Nobrega, R., and Alves, T. (2000), Braz. J. Microbiol. 31, 73–78.Google Scholar
  17. 17.
    Silva, S. S., Vitolo, M., and Felipe, M. G. A. (1996), J. Basic Microbiol. 36(3), 187–191.CrossRefGoogle Scholar
  18. 18.
    Winkelhausen, E., Pittman, P., Kuzmanova, S., and Jeffries, T. W. (1996), Biotechnol. Lett. 18, 753–758.CrossRefGoogle Scholar
  19. 19.
    Stanbury, P. F., Whitake, A., and Hall, S. J. (1995), Principles of Fermentation Technology, 2nd ed., Elsevier Science, NY.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Luis F. Figueiredo Faria
    • 1
  • Maria Antonieta P. Gimenes
    • 2
  • Ronaldo Nobrega
    • 2
  • Nei PereiraJr.
    • 2
  1. 1.Department of Chemical EngineeringFaculty of Chemical Engineering of Lorena/Rod.Lorena-SPBrazil
  2. 2.COPPE and Department of Biochemical Eng.-EQFederal University of Rio de JaneiroBrazil

Personalised recommendations