Advertisement

Applied Biochemistry and Biotechnology

, Volume 98, Issue 1–9, pp 23–35 | Cite as

Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw

  • Lisa E. Gollapalli
  • Bruce E. Dale
  • Douglas M. Rivers
Article

Abstract

The enzymatic digestibility of ammonia fiber explosion (AFEX)-treated rice straw was modeled by statistically correlating the variability of samples to differences in treatment using several different analytical techniques. Lignin content and crystallinity index of cellulose affect enzymatic hydrolysis the most. X-ray diffraction was used to measure the crystallinity index (CrI), while fluorescence and diffuse reflectance infrared (DRIFT) spectroscopy measured the lignin content of the samples. Multivariate analysis was applied to correlate the enzymatic hydrolysis results of the various samples with X-ray diffraction and spectroscopic data. Principal component analysis (PCA) and multilinear regression (MLR) techniques did not accurately predict the digestibility of the rice straw samples. The best correlation (R value of 0.775) was found between the treatment conditions of the AFEX process and the concentration of xylose at 24 h after enzymatic hydrolysis.

Index Entries

Lignocellulose enzymatic digestibility lignin crystallinity AFEX correlation pretreatment X-ray diffraction fluorescence DRIFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holtzapple, M. T., Jun, Jae-Hoon, Ashok, G., Patibandala, S. L., and Dale, B. E. (1991), Appl. Biochem. Biotechnol. 28–29, 59–74.Google Scholar
  2. 2.
    Sulbaran de Ferrer, B., Ferrer A., Byers F. M., Dale B. E., and Aristiguieta M. (1997), Arch. Latinoam. Prod. Anim. 5 (Suppl. 1), 112–114.Google Scholar
  3. 3.
    Chang, V. S. and Holtzapple, M. T. (2000), Appl. Biochem. Biotechnol. 84–86, 5–37.CrossRefGoogle Scholar
  4. 4.
    Fan, L. T., Lee, Y.-H., and Beardmore, D. H. (1980), Biotechnol. Bioeng. 22, 177–199.CrossRefGoogle Scholar
  5. 5.
    Billa, E., Koutsoula, E., and Koukios, E. G. (1999), Bioresour. Technol. 67, 25–33.CrossRefGoogle Scholar
  6. 6.
    Ferraz, A., Baeza, J., Rodriguez, J., and Freer, J. (2000), Bioresour. Technol. 74, 201–212.CrossRefGoogle Scholar
  7. 7.
    Wang, L., Dale, B. E., Yurttas, L., and Goldwasser, I. (1998), Appl. Biochem. Biotechnol. 70–72, 51–66.Google Scholar
  8. 8.
    Van Soest, P. J. and Wine, R. H. (1968). J. Assoc. Official Anal. Chem. 51, 780.Google Scholar
  9. 9.
    Mandels, M. and Andreotti, R. (1976), Biotechnol. Bioeng. 6, 21.Google Scholar
  10. 10.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  11. 11.
    DIONEX Technical Note 20, Analysis of Carbohydrate by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection.Google Scholar
  12. 12.
    Segal, L., Creely, J. J., Martin, Jr. A. E., and Conrad, C. M. (1959), Textile Res. J. 29, 786–794.Google Scholar
  13. 13.
    Backa, S. and Brolin, A. (1991), Tappi J. 74, 218.Google Scholar
  14. 14.
    Hartley, W. N. (1893), J. Chem. Soc. 63, 243.Google Scholar
  15. 15.
    Lamola, A. A., Hammond, G. S., and Mallory, F. B. (1965), Photochem. Photobiol. 4, 259.Google Scholar
  16. 16.
    Anderson, T. H., Weaver, F., William, F., and Owen, N. L. (1991), J. Mol. Structure 249, 257–275.CrossRefGoogle Scholar
  17. 17.
    Michell, A. J. (1988), Appita 47, 375–380.Google Scholar
  18. 18.
    Owen, N. L. and Thomas, D. W. (1989), Appl. Spectroscopy 43, 451–455.CrossRefGoogle Scholar
  19. 19.
    Pandey, K. K. (1999), J. Appl. Polym. Sci. 71, 1969–1975.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Lisa E. Gollapalli
    • 1
  • Bruce E. Dale
    • 1
  • Douglas M. Rivers
    • 2
  1. 1.Department of Chemical EngineeringMichigan State UniversityEast Lansing
  2. 2.MBI, InternationalLansing

Personalised recommendations