Advertisement

Applied Biochemistry and Biotechnology

, Volume 91, Issue 1–9, pp 739–752 | Cite as

Kinetic studies of lipase from Candida rugosa

A comparative study between free and immobilized enzyme onto porous chitosan beads
  • Ernandes B. Pereira
  • Heizir F. De Castro
  • Flávio F. De Moraes
  • Gisella M. ZaninEmail author
Article

Abstract

The search for an in expensive support has motivated our group to undertake this work dealing with the use of chitosan as matrix for immobilizing lipase. In addition to its low cost, chitosan has several advantages for use as a support, including its lack of toxicity and chemical reactivity, allowing easy fixation of enzymes. In this article, we describe the immobilization of Canada rugosa lipase onto porous chitosan beads for the enzymatic hydrolysis of oliveoil. The binding of the lipase onto the support was performed by physicalad sorption using hexane as the dispersion medium. A comparativestudy between free and immobilized lipase was conducted in terms of pH, temperature, and thermal stability. A slightly lower value for optimum pH (6.0) was found for the immobilized form in comparison with that attained for the soluble lipase (7.0). The optimum reaction temperature shifted from 37°C for the free lipase to 50°C for the chitosan lipase. The patterns of heat stability indicated that the immobilization process tends to stabilize the enzyme. The half-life of the soluble free lipase at 55°C was equal to 0.71 h (K d=0.98 h−1), whereas for the immobilized lipase it was 1.10 h (K d=0.63 h−1). Kinetics was tested at 37°C following the hydrolysis of olive oil and obeys the Michaelis-Menten type of rate equation. The K m was 0.15 mM and the V max was 51 μmol/(min·mg), which were lower than for free lipase, suggesting that the apparent affinity toward the substrate changes and that the activity of the immobilized lipase decreases during the course of immobilization.

Index Entries

Lipase immobilization chitosan physical adsorption characterization hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leuenberger, H. G. W. (1990), Pure Appl. Chem. 62, 753–768.Google Scholar
  2. 2.
    Faber, K. (1997), Biotransformation in Organic Chemistry: A Textbook, Faber, K., ed., Springer-Verlag, Berlin, pp. 3–25.Google Scholar
  3. 3.
    Yahya, A. R. M., Anderson, W. A., and Moo-Young, M. (1998), Enzyme Microb. Technol. 23, 438–450.CrossRefGoogle Scholar
  4. 4.
    Roberts, S. M. and Turner, M. K. (1998), Enantioner, 3, 9–18.Google Scholar
  5. 5.
    Jarger, K. E. and Reetz, M. T. (1998), TIBTECH 16, 396–403.Google Scholar
  6. 6.
    Gandhi, N. N. (1997), J. Am. Oil Chem. Soc. 74, 621–634.CrossRefGoogle Scholar
  7. 7.
    Balcão, V. M., Paiva, A. L., and Malcata, F. X. (1996), Enzyme Microb. Technol. 18, 392–416.CrossRefGoogle Scholar
  8. 8.
    Rosu, R., Iwasaki, Y., Shimizu, N., Doisaki, N., and Yamane, T. (1998), J. Biotechnol. 66, 51–59.CrossRefGoogle Scholar
  9. 9.
    Tantrakulsiri, J., Jeyashoke, N., and Krisanangkura, K. (1997), J. Am. Oil Chem. Soc. 74, 173–175.CrossRefGoogle Scholar
  10. 10.
    Krajewska, B. (1991), Acta Biotechnol. 11, 269–277.CrossRefGoogle Scholar
  11. 11.
    Felse, P. A. and Panda, T. (1999), Bioprocess Eng. 20, 505–512.CrossRefGoogle Scholar
  12. 12.
    Itoyama, K., Tokura, S., and Hayashi, T. (1994), Biotechnol. Prog. 10, 225–229.CrossRefGoogle Scholar
  13. 13.
    Carneiro da Cunha, M. G., Rocha, J. M. S., Garcia, F. A. P., and Gil, M. H. (1999), Biotechnol. Technol. 13, 403–409.CrossRefGoogle Scholar
  14. 14.
    De Castro, H. F., Oliverira, P. C., Soares, C. M. F., and Zanin, G. M. (1999), J. Am. Oil Chem. Soc. 76, 147–152.CrossRefGoogle Scholar
  15. 15.
    Oliveira, P. C., Alves, G. M., and De Castro, H. F. (2000), Biochem. Eng. J. 5, 63–71.CrossRefGoogle Scholar
  16. 16.
    Soares, C. M. F., De Castro, H. F., De Moraes, F. F.., and Zanin, G. M. (1999), Appl. Biochem. Biotechnol. 77–79, 745–757.CrossRefGoogle Scholar
  17. 17.
    Bradford, M. M. A. (1976), Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  18. 18.
    Mustranta, A., Forssell, P., and Poutanen, K. (1993), Enzyme Microb. Technol. 15, 133–139.CrossRefGoogle Scholar
  19. 19.
    Fukunaga, K., Minamijima, N., Sugimura, Y., Zhang, Z., and Nakao, K. (1996), J. Biotechnol. 52, 81–88.CrossRefGoogle Scholar
  20. 20.
    Zanin, G. M., Calsvara, L. P. V., Kambara, L. M., and De Moraes, F. F. (1995), Appl. Biochem. Biotechnol. 51/52 253–262.Google Scholar
  21. 21.
    Zanin, G. M. and De Moraes, F. F. (1998), Appl. Biochem. Biotechnol. 70/72, 383–394.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Ernandes B. Pereira
    • 1
  • Heizir F. De Castro
    • 2
  • Flávio F. De Moraes
    • 1
  • Gisella M. Zanin
    • 1
    Email author
  1. 1.Department of Chemical EngineeringMaringá State UniversityMaringá-PRBrazil
  2. 2.Department of Chemical EngineeringFaculty of Chemical Engineering of LorenalLorena-SPBrazil

Personalised recommendations