Advertisement

Applied Biochemistry and Biotechnology

, Volume 91, Issue 1–9, pp 459–467 | Cite as

Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1

  • L. M. Santa Anna
  • G. V. Sebastian
  • N. PereiraJr.
  • T. L. M. Alves
  • E. P. Menezes
  • D. M. G. Freire
Article

Abstract

The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, wasevaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016–0.008 g/L) The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. AC:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).

Index Entries

Production of biosurfactants glycolipids rhamnolipids Pseudomonas aeruginosa surface tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    García, M. A. (1992), Revista Instituto Mexicano Petroleo 24, 68.Google Scholar
  2. 2.
    Harvey, S., Elashvili, L., Valdes, J. J., Kamely, D., and Chakrabarty, M. (1990), Biotechnology 8, 228–338.CrossRefGoogle Scholar
  3. 3.
    Fiechter, A. (1992), Tibtech 1, 208.Google Scholar
  4. 4.
    Boulton, C. and Ratledge, C. (1987), Biosurfactants Biotechonol. 25, 47.Google Scholar
  5. 5.
    Ochener, U. A., Hembach, T., and Fiechter, A. (1995), Adv. Biochem. Eng. Biotechnol. 53, 89.Google Scholar
  6. 6.
    Venkata Ramana, K. and Karanth, N. G. (1989), J. Chem. Technol. Biotechnol. 45, 249.CrossRefGoogle Scholar
  7. 7.
    Biolog (1993), MicroStationTM System Release, version 3.50.Google Scholar
  8. 8.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
  9. 9.
    Trinder, P. (1969), Ann. Clin. Biochem. 6, 24–27.Google Scholar
  10. 10.
    American Society for Testing Materials. (1999), ASTM D971-99a Standard Test Method for Interfacial Tension of Oil Against Water by the Ring Method, American Society for Testing Materials.Google Scholar
  11. 11.
    Suk, W.-S., Son, H.-J., Lee, G., and Lee, S.-J. (1999), J. Microbiol. Biotechnol. 9(1), 56–61.CrossRefGoogle Scholar
  12. 12.
    Hisatsuka, K., Nakahara, T., Sano, N., and Yamanda, K. (1971), Agric. Biol. Chem. 35, 686–692.Google Scholar
  13. 13.
    Banat, I. M. (1995), Acta Biotechnol. 15(3), 251–267.CrossRefGoogle Scholar
  14. 14.
    Ribeiro, A., Zhou, A., and Raetz, C. R. H. (1999), Magnet. Reson. Chem. 37, 620–630.CrossRefGoogle Scholar
  15. 15.
    Syldatk, C., Lang, S., and Matulovic, U. (1985), Z. Naturforsch. 40(1), 61–67.Google Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • L. M. Santa Anna
    • 1
  • G. V. Sebastian
    • 1
  • N. PereiraJr.
    • 2
  • T. L. M. Alves
    • 3
  • E. P. Menezes
    • 4
  • D. M. G. Freire
    • 5
  1. 1.Centro de Pesquisas da Petrobras (Petrobras Research Center-CENPES)Rio de JaneiroBrazil
  2. 2.Esco la de QuímicaUFRRio de JaneiroBrazil
  3. 3.PEQ/COPPE/UFRJRio de JaneiroBrazil
  4. 4.Fundacão Tropical André ToselloSão PauloBrazil
  5. 5.Faculdade de FarmáciaUFRJRio de JaneiroBrazil

Personalised recommendations