Applied Biochemistry and Biotechnology

, Volume 90, Issue 3, pp 199–210 | Cite as

Lichenysin

A more efficient cation chelator than surfactin
  • Isabelle Grangemard
  • Jean Wallach
  • Regine Maget-Dana
  • Françoise Peypoux
Article

Abstract

The lipopeptide lichenysin (cyclo-[L-Gln1→D-Leu2→L-Leu3→L-Val4→L-Asp5→D-Leu6→L-Ile7-β-OH fatty acid]) produced by Bacillus licheniformis structurally resembles surfactin from Bacillus subtilis. The main difference is the presence of a glutaminyl residue in position 1 of the peptide sequence in place of glutamic acid in surfactin. This local variation causes significant changes in the properties of the molecule compared to surfactin. Lichenysin has a higher surfactant power, the critical micellar concentration (c.m.c.) being strongly reduced from 220 to 22 µM and a much higher hemolytic activity because 100% hemolysis was observed with only 15 µM instead of 200 µM. Lichenysin is also a better chelating agent because its association constants with Ca2+ and Mg2+ are increased by a factor of 4 and 16, respectively. This effect is assigned to an increase in the accessibility of the carboxyl group to cations owing to a change in the side chain topology induced by the Glu/Gln exchange. Additionally, the propensity of the lipopeptide for extensive hydrophobic interactions, as illustrated by its low c.m.c., contributes to further stabilization of the cation and an increase in the partitioning of lichenysin into the erythrocyte membrane. Our data support the formation of a lichensyin-Ca2+ complex in a molar ratio of 2:1 instead of 1:1 with surfactin, suggesting an intermolecular salt bridge between two lichenysin molecules. Therefore, when Ca2+ ions are present in the solution, micellization occurs via a dimer assembly, with a possible long-range effect on the spatial arrangement of the micelles or other supramolecular structures. Finally, among all the surfactin peptidic variants so far known, lichenysin is the one for which the three tested activities are the most substantially improved.

Index Entries

Surfactin lichenysin biosurfactant lipopeptide cation binding hemolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peypoux, F., Bonmatin, J. M., and Wallach, J. (1999), Appl. Microbiol. Biotechnol. 51, 553–563.CrossRefGoogle Scholar
  2. 2.
    Arima, K., Kakinuma, A., and Tamura, G. (1968), Biochem. Biophys. Res. Commun. 31, 488–494.CrossRefGoogle Scholar
  3. 3.
    Imai, Y., Sugino, H., Fugita, T., and Kakinuma, A. (1971), Takeda Kenkyusho 30, 728–734.Google Scholar
  4. 4.
    Vollenbroich, D., Özel, M., Vater, J., Kamp, R. M., and Pauli, G. (1997), Biologicals 25, 289–297.CrossRefGoogle Scholar
  5. 5.
    Kameda, Y., Matsui, K., Hisato, K., Yamada, T., and Sagai, H. (1972), Chem. Pharm. Bull. (Tokyo) 20, 1551–1553.Google Scholar
  6. 6.
    Nissen, E., Vater, J., and Vollenbroich, D. (1997), In Vitro Cell. Dev. Biol. Anim. 33, 414, 415.CrossRefGoogle Scholar
  7. 7.
    Hosono, K. and Suzuki, H. (1983), J. Antibiot. 36, 679–683.Google Scholar
  8. 8.
    Kim, K., Jung, S. Y., Lee, D. K., Jung, J., Park, J. K., Kim, D. K., and Lee, C. (1998), Biochem. Pharmacol. 55, 975–985.CrossRefGoogle Scholar
  9. 9.
    Sheppard, J. D., Jumarie, C., Cooper, D. G., and Laprade, R. (1991), Biochim. Biophys. Acta 1064, 110–116.Google Scholar
  10. 10.
    Trischman, J. A., Jensen, P. R., and Fenical, W. (1994), Tetrahedron Lett. 35, 5571–5574.CrossRefGoogle Scholar
  11. 11.
    Grangemard, I., Bonmatin, J. M., Bernillon, J., Das, B. C., and Peypoux, F. (1999), J. Antibiot. 52, 363–373.Google Scholar
  12. 12.
    Yakimov, M. M., Abraham, W., Meyer, H., Giulano, L., and Golyshin P. N. (1999), Biochim. Biophys. Acta 1438, 273–280.Google Scholar
  13. 13.
    Yakimov, M. M., Kroger, A., Slepak, T. N., Guilano, L., Timmis, K. N., and Golyshin, P. N. (1998), Biochim. Biophys. Acta 1399, 141–153.Google Scholar
  14. 14.
    Konz, D., Doekel, S., and Marahiel, M. A. (1999), J. Bacteriol. 181, 133–140.Google Scholar
  15. 15.
    Stachelhaus, T., Schneider, A., and Marahiel, M. A. (1995), Science 269, 5571–5574.CrossRefGoogle Scholar
  16. 16.
    Schneider, A., Stachelhaus, T., and Marahiel, M. A. (1998), Mol. Gen. Genet. 257, 308–318.CrossRefGoogle Scholar
  17. 17.
    Galli, G., Rodriguez, F., Cosmina, P., Pratesi, C., Nogarotto, R., De Ferra, F., and Grandi, G. (1994), Biochim. Biophys. Acta 1205, 19–28.Google Scholar
  18. 18.
    Bonmatin, J. M., Genest, M., Labbé, H., and Ptak, M. (1994), Biopolymers 34, 975–986.CrossRefGoogle Scholar
  19. 19.
    Thimon, L., Peypoux, F., Wallach, J., and Michel, G. (1993), Colloids Surfaces B 1, 57–62.CrossRefGoogle Scholar
  20. 20.
    Maget-Dana, R. and Ptak, M. (1995), Biophys. J. 68, 1937–1943.CrossRefGoogle Scholar
  21. 21.
    Grau, A., Gomez Fernandez, J. C., Peypoux, F., and Ortiz, A. (1999), Biochim. Biophys. Acta 1418, 307–319.CrossRefGoogle Scholar
  22. 22.
    Thimon, L., Peypoux, F., and Michel, G. (1992), Biotechnol. Lett. 14, 713–718.CrossRefGoogle Scholar
  23. 23.
    Osman, M., Hoiland, H., Holmsen, H., and Ishigami, Y. (1998), J. Peptide Sci. 4, 449–458.CrossRefGoogle Scholar
  24. 24.
    Grangemard, I., Peypoux, F., Wallach, J., Das, B. C., Labbé, H., Caille, A., Genest, M., Maget-Dana, R., Ptak, M., and Bonmatin, J. M. (1997), J. Peptide Sci. 3, 145–154.CrossRefGoogle Scholar
  25. 25.
    Wallach, J. and Hanss, M. (1978), Anal. Biochem. 88, 69–77.CrossRefGoogle Scholar
  26. 26.
    Chen, Y. H., Hu, C. T., and Yang, J. T. (1984), Biochem. Int. 8, 329–338.Google Scholar
  27. 27.
    Thimon, L., Peypoux, F., Das, B. C., Wallach, J., and Michel, G. (1994), Biotechnol. Appl. Biochem. 20, 415–423.Google Scholar
  28. 28.
    Peypoux, F., Bonmatin, J. M., Labbé, H., Grangemard, I., Das, B. C., Ptak, M., Wallach, J., and Michel, G. (1994), Eur. J. Biochem. 224, 89–96.CrossRefGoogle Scholar
  29. 29.
    Bonmatin, J. M., Labbé, H., Grangemard, I., Peypoux, F., Maget-Dana, R., Ptak, M., and Michel, G. (1995), Lett. Peptide Sci. 2, 41–47.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Isabelle Grangemard
    • 1
  • Jean Wallach
    • 1
  • Regine Maget-Dana
    • 2
  • Françoise Peypoux
    • 1
  1. 1.Laboratoire de Biochimie Analytique et de Synthèse BioorganiqueUniversité Lyon 1Villeurbanne CedexFrance
  2. 2.Centre de Biophysique Moléculaire (CNRS)Orléans, Cedex 2France

Personalised recommendations