Applied Biochemistry and Biotechnology

, Volume 87, Issue 3, pp 203–218 | Cite as

High photosynthetic productivity of green microalga Chlorella sorokiniana

  • Masahiko Morita
  • Yoshitomo Watanabe
  • Hiroshi Saiki


The batch culture of a newly isolated strain of a green microalga, Chlorella sorokiniana, was carried out using a conical helical tubular photobioreactor. The isolate was capable of good growth at 40°C under an airstream enriched with 10% CO2. The maximum photosynthetic productivity was 34.4g of dry biomass/(m2 of installation area · d) (12-h light/12-h dark cycle) when the cells were illuminated with an average photosynthetic photon flux density (photosynthetically active radiation ([PAR] 400–700 nm) simulating the outdoors in central Japan (0.980 mmol photons/[m2·s]). This corresponded to a photosynthetic efficiency of 8.67% (PAR), which was defined as the percentage of the light energy recovered as biomass (394 kJ/[reactor·d]) to the total light energy received (4545 kJ/[reactor·d]). A similarly high photosynthetic efficiency (8.12% [PAR]) was also attained in the combined presence of 10% CO2, 100 ppm of NO, and 25 ppm of SO2. Moreover, good photosynthetic productivity was also obtained under high temperature and high light intensity conditions (maximum temperature, 46.5°C; 1.737 mmol photons/[m2·s]), when simulating the strong irradiance of the midday summer sun. This strain thus appears well suited for practical application for converting CO2 present in the stack gases emitted by thermal power plants and should be feasible even during the hot summer weather.

Index Entries

Microalgae carbon dioxide global warming photosynthesis bioreactor effective utilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benemann, J. R., Tillett, D. M., and Weissman, J. C. (1987), Trends Biotechnol. 5, 47–53.CrossRefGoogle Scholar
  2. 2.
    Watanabe, Y. and Hall, D. O. (1996), Appl. Microbiol. Biotechnol. 44, 693–698.Google Scholar
  3. 3.
    Tredici, M. R. and Materassi, R. (1992), J. Appl. Phycol. 4, 221–231.CrossRefGoogle Scholar
  4. 4.
    Sorokin, C. and Myers, J. (1953), Science 117, 330, 331.CrossRefGoogle Scholar
  5. 5.
    Kessler, E. (1982), in Progress in Phycological Research, vol. 1, Round, F. E. and Chapman, D. J., eds., Elsevier Biomedical Press BV, Amsterdam, pp. 111–135.Google Scholar
  6. 6.
    Kessler, E. and Huss, V. A. R. (1992), J. Phycol. 28, 550–553.CrossRefGoogle Scholar
  7. 7.
    Hanagata, N., Takeuchi, T., Fukuju, Y., Barnes, D. J., and Karube, I. (1992), Phytochemistry 31, 3345–3348.CrossRefGoogle Scholar
  8. 8.
    Kodama, M., Ikemoto, H., and Miyachi, S. (1993), J. Marine Biotechnol. 1, 21–25.Google Scholar
  9. 9.
    Watanabe, Y., Ohmura, N., and Saiki, H. (1992), Energy Convers. Mgmt. 33, 545–552.CrossRefGoogle Scholar
  10. 10.
    Negoro, M., Shioji, N., Miyamoto, K., and Miura, Y. (1991), Appl. Biochem. Biotechnol. 28/29, 877–886.CrossRefGoogle Scholar
  11. 11.
    Nagase, H., Yoshihara, K., Eguchi, K., Yokota, Y., Matsui, R., Hirata, K., and Miyamoto, K. (1997), J. Ferment. Bioeng. 83, 461–465.CrossRefGoogle Scholar
  12. 12.
    Shihira, I. and Krauss, R. W. (1965), Chlorella: Physiology and Taxonomy of Forty-One Isolates, Univ. Maryland, College Park, MD.Google Scholar
  13. 13.
    Hall, D. O. and Scurlock, J. M. O. (1993), in Photosynthesis and Production in a Changing Environment, Hall, D. O., Scurlock, J. M. O., Bolhar-Nordenkampf, H. R., Leegood, R. C., and Long, S. P., eds., Chapman & Hall, London, pp. 425–444.Google Scholar
  14. 14.
    Platt, T. and Irwin, B. (1973), Limnol. Oceanogr. 18, 306–310.CrossRefGoogle Scholar
  15. 15.
    Vonshak, A. and Guy, R. (1992), Plant Cell Environ. 15, 613–616.CrossRefGoogle Scholar
  16. 16.
    Laws, E. A. and Berning, J. L. (1991), Biotechnol. Bioeng. 37, 936–947.CrossRefGoogle Scholar
  17. 17.
    Torzillo, G., Carlozzi, P., Pushparaj, B., Montaini, E., and Materassi, R. (1993), Biotechnol. Bioeng. 42, 891–898.CrossRefGoogle Scholar
  18. 18.
    Watanabe, Y. and Saiki, H. (1997), Energy Convers. Mgmt. 38, S499-S503.CrossRefGoogle Scholar
  19. 19.
    Parsons, T. R., Stephens, K., and Strickland, J. D. H. (1961), J. Fish. Res. Bd. Can. 18, 1001–1016.Google Scholar
  20. 20.
    Tredici, M. R. and Zittelli, G. C. (1998), Biotechnol. Bioeng. 57, 187–197.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Masahiko Morita
    • 1
  • Yoshitomo Watanabe
    • 1
  • Hiroshi Saiki
    • 1
  1. 1.Bio-Science Department, Abiko Research LaboratoryCentral Research Institute of Electric Power IndustryChibaJapan

Personalised recommendations