Applied Biochemistry and Biotechnology

, Volume 84, Issue 1–9, pp 801–808 | Cite as

Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters

  • Tihany A. Morita
  • Silvio S. SilvaEmail author


Precipitated sugarcane bagasse hemicellulosic hydrolysate containing acetic acid was fermented by Candida guilliermondii FTI 20037 under different operational conditions (pH 4.0 and 7.0, three aeration rates). At pH 7.0 and k L a of 10 (0.75 vvm) and 22.5/h (3.0 vvm) the acetic acid had not been consumed until the end of the fermentations, whereas at the same pH and k L a of 35/h (4.5 vvm) the acid was rapidly consumed and acetic acid inhibition was not important. On the other hand, fermentations at an initial pH of 4.0 and k L a of 22.5 and 35/h required less time for the acid uptake than fermentations at k L a of 10/h. The acetic acid assimilation by the yeast indicates the ability of this strain to ferment in partially detoxified medium, making possible the utilization of the sugarcane bagasse hydrolysate in this bioprocess. The effects on xylitol yield and production are reported.

Index Entries

Xylitol hydrolysate acetic acid kLa pH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeffries, T. W. (1983), Biotechnol. Technol. 1, 503–506.CrossRefGoogle Scholar
  2. 2.
    Magge, R. J. and Kosaric, N. (1985), Advan. Biochem. Eng. Biotechnol. 32, 60–93.Google Scholar
  3. 3.
    Olsson, L. and Hähn-Hagerdal, B. (1996), Enzyme Microb. Technol. 18, 312–331.CrossRefGoogle Scholar
  4. 4.
    Leonard, R. H. and Hajny, G. J. (1945), Ind. Eng. Chem. Res. 37, 390–395.CrossRefGoogle Scholar
  5. 5.
    Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1998), Bioresour. Technol. 66, 25–40.CrossRefGoogle Scholar
  6. 6.
    van Zyl, C., Prior, B. A., and du Preez, J. C. (1988), Appl. Biochem. Biotechnol. 17, 357–369.Google Scholar
  7. 7.
    Ferrari, M. D., Neirotti, E., Albornoz, C., and Saucedo, E. (1992), Biotechnol. Bioeng. 40, 753–759.CrossRefGoogle Scholar
  8. 8.
    Nolleau, V., Preziosi-Belloy, L., Delgenes, J. P., and Delgenes, J. M. (1993), Curr. Microbiol. 27, 191–197.CrossRefGoogle Scholar
  9. 9.
    van Zyl, C., Prior, B. A., and du Preez, J. C. (1991), Enzyme Microb. Technol. 13, 82–86.CrossRefGoogle Scholar
  10. 10.
    Felipe, M. G. A., Vitolo, M., Mancilha, I. M., and Silva, S. S. (1997), Biomass Bioenergy 13(1/2), 11–14.CrossRefGoogle Scholar
  11. 11.
    Preziosi-Belloy, L., Nolleau, V., and Navarro, J. M. (1997), Enzyme Microb. Technol. 21, 124–129.CrossRefGoogle Scholar
  12. 12.
    Chen, L. F. and Gong, C. S. (1985), J. Food Sci. 50, 226–228.CrossRefGoogle Scholar
  13. 13.
    Sene, L., Felipe, M. G. A., Vitolo, M., Silva, S. S., and Mancilha, I. M. (1998), J. Basic Microb. 38(1), 61–69.CrossRefGoogle Scholar
  14. 14.
    Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 7, 841–846.CrossRefGoogle Scholar
  15. 15.
    Gong, C. S., Chen, C. S., and Chen, L. F. (1993), Appl. Biochem. Biotechnol. 39–40, 83–88.Google Scholar
  16. 16.
    Perego, P., Converti, A., Palazzi, E., Del Borghi, M., and Ferraiolo, G. (1990), J. Ind. Microbiol. 6, 157–164.CrossRefGoogle Scholar
  17. 17.
    Roberto, I. C., Felipe, M. G. A., Lacis, L. S., and Silva, S. S. (1991), Bioresour. Technol. 36, 271–275.CrossRefGoogle Scholar
  18. 18.
    Feline, M. G. A., Vitolo, M., and Manalha, I. (1996), Acta Biochem. 16, 73–79.Google Scholar
  19. 19.
    Makinen, K. K. (1976), Futurist 135–139.Google Scholar
  20. 20.
    Pepper, T. and Ollinger, P. M. (1988), Food Technol. 42, 98–106.Google Scholar
  21. 21.
    Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1998), Bioresour. Technol. 65, 191–201.CrossRefGoogle Scholar
  22. 22.
    Rodrigues, D. C. G. A. (1997), MS thesis, Faculdade de Engenharia Química de Lorena, São Paulo, Brasil.Google Scholar
  23. 23.
    Pirt, S. J. (1975), Principles of Microbe and Cell Cultivation, Blackwell, Oxford.Google Scholar
  24. 24.
    Vallejo, C. G. and Serrano, R. (1989), Yeast 5, 307–319.CrossRefGoogle Scholar
  25. 25.
    Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., and Mancilha, I. M. (1995), J. Basic Microb. 35(3), 171–177.CrossRefGoogle Scholar
  26. 26.
    Freeze, E. (1978), in Symposium on the Pharmacological Effect of Lipids, American Oil Chemist's Society, IL.Google Scholar
  27. 27.
    Roberto, I. C., Silva, S. S., Felipe, M. G. A., Ismael, I. M., and Sato, S. (1996), Appl. Biochem. Biotechnol. 57/58, 339–347.CrossRefGoogle Scholar
  28. 28.
    Mohandas, D. V., Whelan, D. R., and Panchal, C. J. (1995), Appl. Biochem. Biotechnol. 51/52, 307–318.CrossRefGoogle Scholar
  29. 29.
    Gancedo, C. and Serrano, R. (1989), in The Yeasts, vol. 3, Rose, A. H. and Harrison, J. S., eds., Academic, San Diego.Google Scholar
  30. 30.
    Pessoa, A., Jr., Mancilha, I. M., and Sato, S. (1996), J. Biotechnol. 51, 83–88.CrossRefGoogle Scholar
  31. 31.
    Silva, S. S. (1994), PhD thesis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil.Google Scholar
  32. 32.
    Silva, S. S., Quesada-Chanto, A., and Vitolo, M. (1997), Z. Naturforsch. 52(5/6), 359–363.Google Scholar
  33. 33.
    Almeidae Silva, J. B., Mancilha, I. M., Vannetti, M. C. D., and Teixeira, M. A. (1995), Bioresour. Technol. 50, 197–200.CrossRefGoogle Scholar
  34. 34.
    Lohmeier-Vogel, E. M., Sopher, C. R., and Lee, H. (1998), J. Ind. Microbiol. Biotechnol. 20, 75–81.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  1. 1.Biotechnology DepartmentFaculty of Chemical Engineering of LorenaLorenaBrazil

Personalised recommendations