Fundamental factors affecting biomass enzymatic reactivity

Abstract

Poplar wood was treated with peracetic acid, KOH, and ball milling to produce 147 modellignocelluloses with a broad spectrum of lignin contents, acetyl contents, and crystallinity indices (CrIs), respectively. An empirical model was identified that describes the roles of these three properties in enzymatic hydrolysis. Lignin content and CrI have the greatest impact on biomass digestibility, whereas acetyl content has a minor impact. The digestibility of several lime-treated biomass samples agreed with the empirical model. Lime treatment removesallacetyl groups and a moderate amount of lignin and increases CrIslightly; lignin removal is the dominant benefit from lime treatment.

Index Entries

Lignocellulose enzymatic digestibility lignin acetyl groups crystallinity correlation pretreatment lime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klyosov, A. A. (1986), Appl. Biochem. Biotechnol. 12, 249–300.Google Scholar
  2. 2.
    Holtzapple, M. T., Ross, M. K., Chang, N.-S., Chang, V. S., Adelson, S. K., and Brazel, C. (1997), in Fuels and Chemicals from Biomass, Saha, B. C. and Woodward, J., eds., American Chemical Society, Washington, DC, pp. 130–142.Google Scholar
  3. 3.
    Cowling, E. B., (1975), Biotechnol. Bioeng. Symp. 5, 163–181.Google Scholar
  4. 4.
    Dunlap, C. E., Thomson, J., and Chiang, L. C. (1976), AIChE Symp. Ser. 15872, 58–63.Google Scholar
  5. 5.
    Wilkinson, J. M. and Santillana, R. G. (1978), Anim. Feed Sci. Technol. 3, 117–132.CrossRefGoogle Scholar
  6. 6.
    Ibrahim, M. N. M. and Pearce, G. R., (1983), Agric. Wastes 5, 135–156.CrossRefGoogle Scholar
  7. 7.
    Lin, K. W., Ladisch, M. R., Voloch, M., Patterson, J. A., and Noller, C. H. (1985), Biotechnol. Bioeng. 27, 1427–1433.CrossRefGoogle Scholar
  8. 8.
    Weimer, P. J., Chou, Y.-C.T., Weston, W. M., and Chase, D. B. (1986), Biotechnol. Bioeng. Symp. 17, 5–18.Google Scholar
  9. 9.
    Rolz, C., de Arriola, M. C., Valladares, J., and de Cabrera, S. (1987), Process Biochem. 22, 17–23.Google Scholar
  10. 10.
    Grethlein, H. E. and Converse, A. O. (1991), Bioresource Technol. 36, 77–82.CrossRefGoogle Scholar
  11. 11.
    Norkrans, B. (1950), Physiol. Plant 3, 75–87.CrossRefGoogle Scholar
  12. 12.
    Walseth, C. S. (1952), Tappi 35(5), 233–238.Google Scholar
  13. 13.
    Sullivan, J. T. (1959), J. Anim. Sci. 18, 1292–1298.Google Scholar
  14. 14.
    Van Soest, P. J. (1969), in Cellulases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 262–278.Google Scholar
  15. 15.
    Stone, J. E., Scallan, A. M., Donefer, E., and Ahlgren, E. (1969), in Cellu lases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 219–241.Google Scholar
  16. 16.
    Feist, W. C., Baker, A. J., and Tarkow, H. (1970), J. Anim. Sci. 30, 832–835.Google Scholar
  17. 17.
    Baker, A. J. (1973), J. Anim. Sci. 36(4), 768–771.Google Scholar
  18. 18.
    Anderson, D. C. and Ralston, A. T. (1973), J. Anim. Sci., 37 (1), 148–152.Google Scholar
  19. 19.
    Caulfield, D. F. and Moore, W. E. (1974), Wood Sci. 6(4), 375–379.Google Scholar
  20. 20.
    Han, Y. W., Lee, J. S., and Anderson, A. W. (1975), J. Agric. Food Chem. 23, 928–931.CrossRefGoogle Scholar
  21. 21.
    Sasaki, T., Tanaka, T., Nanbu, N., Sato, Y., and Kainuma, K. (1979), Biotechnol. Bioeng. 21, 1031–1042.CrossRefGoogle Scholar
  22. 22.
    Fan, L. T., Lee, Y.-H., and Breadmore, D. H. (1980), Biotechnol. Bioeng. 22, 177–199.CrossRefGoogle Scholar
  23. 23.
    Knappert, D., Grethlein, H., and Converse, A. (1980), Biotechnol. Bioeng. 22, 1449–1463.CrossRefGoogle Scholar
  24. 24.
    Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1981), Biotechnol. Bioeng. Symp. 11, 29–45.Google Scholar
  25. 25.
    Gharpuray, M. M., Lee, Y.-H., and Fan, L. T. (1983), Biotechnol. Bioeng. 25, 157–172.CrossRefGoogle Scholar
  26. 26.
    Han, Y. W., Catalano, E. A., and Ciegler, A. (1983), J. Agric. Food Chem. 31, 34–38.CrossRefGoogle Scholar
  27. 27.
    Puri, V. P. (1984), Biotechnol. Bioeng. 26, 1219–1222.CrossRefGoogle Scholar
  28. 28.
    Grethlein, H. E. (1985), Bio/Technol. 3, 155–160.CrossRefGoogle Scholar
  29. 29.
    Bertran, M. S. and Dale, B. E., (1985), Biotechnol. Bioeng. 27, 177–181.CrossRefGoogle Scholar
  30. 30.
    Wei, C.-J. and Cheng, C.-Y. (1985), Biotechnol. Bioeng. 27, 1418–1426.CrossRefGoogle Scholar
  31. 31.
    Weimer, P. J. and Weston, W. M. (1985), Biotechnol. Bioeng. 27, 1540–1547.CrossRefGoogle Scholar
  32. 32.
    Grous, W. R., Converse, A. O., and Grethlein, H. E. (1986), Enzyme Microb. Technol. 8, 274–280.CrossRefGoogle Scholar
  33. 33.
    Rivers, D. B. and Emert, G. H. (1988), Biotechnol. Bioeng. 31, 278–281.CrossRefGoogle Scholar
  34. 34.
    Grohmann, K., Mitchell, D. J., Himmel, M. E., Dale, B. E., and Schroeder, H. A. (1989), Appl. Biochem. Biotechnol. 20/21, 45–61.Google Scholar
  35. 35.
    Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991), Appl. Biochem. Biotechnol. 30, 43–59.Google Scholar
  36. 36.
    Kong, R., Engler, C. R., and Soltes, E. J. (1992), Appl. Biochem. Biotechnol. 34, 23–35.Google Scholar
  37. 37.
    Thompson, D. N. and Chen, H.-C. (1992), Bioresource Technol. 39, 155–163.CrossRefGoogle Scholar
  38. 38.
    Koullas, D. P., Christakopoulos, P., Kekos, D., Macris, B. J. and Koukios, E. G. (1992), Biotechnol. Bioeng. 39, 113–116.CrossRefGoogle Scholar
  39. 39.
    Vinzant, T. B., Ehrman, C. I., Adney, W. S., Thomas, S. R., and Himmel, M. E. (1997), Appl. Biochem. Biotechnol. 62, 99–104.Google Scholar
  40. 40.
    Moniruzzaman, M., Dale, B. E., Hespell, R. B., and Bothast, R. J. (1997), Appl. Biochem. Biotechnol. 67, 113–126.Google Scholar
  41. 41.
    Holtzapple, M. T. (1993), in Encyclopedia of Food Science, Food Technology, and Nutrition, vol. 4, Macrae, R., Robinson, R. K., and Sadler, M. J., eds., Academic, London, pp. 758–767.Google Scholar
  42. 42.
    Bouveng, H. O. (1961), Acta Chem. Scand. 15, 87–96.Google Scholar
  43. 43.
    Tarkow, H. and Feist, W. C. (1969), in Cellulases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 197–218.Google Scholar
  44. 44.
    Chang, V. S., Holtzapple, M. T., and Davidson, R., (1996), Part III, Final Report, Subcontract XAW-3-11181-03, National Renewable Enrgy Laboratory, Golden, CO.Google Scholar
  45. 45.
    Chang, V. S., Burr, B., and Holtzapple, M. T. (1997), Appl. Biochem. Biotechnol. 63–65, 3–19.CrossRefGoogle Scholar
  46. 46.
    Chang, V. S., Nagwani, M., and Holtzapple, M. T. (1998), Appl. Biochem. Biotechnol. 74, 135–159.Google Scholar
  47. 47.
    Browning, B. L. (1967), Methods of Wood Chemistry, vol. 2, Interscience, New York.Google Scholar
  48. 48.
    Chemical Analysis & Testing Standard Procedure, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  49. 49.
    Whistler, R. L. and Jeans, A. (1943), Ind. Eng. Chem., Anal. Ed. 15(5), 317, 318.CrossRefGoogle Scholar
  50. 50.
    Segal, L., Creely, J. J., Martin, A. E., Jr., and Conrad, C. M. (1959), Textile Res. J. 29, 786–794.Google Scholar
  51. 51.
    Chang, S. (1999), PhD thesis, Texas A& M University, College Station.Google Scholar
  52. 52.
    Lee, Y.-H. and Fan, L. T. (1982), Biotechnol. Bioeng. 24, 2383–2406.CrossRefGoogle Scholar
  53. 53.
    Pugh, E. M. and Winslow, G. H. (1966), The Analysis of Physical Measurements, Addson-Wesley, Reading, MA.Google Scholar
  54. 54.
    Shoemaker, D. P., Garland, C. W., and Steinfeld, J. I. (1974) Experiments in Physical Chemistry, McGraw-Hill, New York.Google Scholar
  55. 55.
    Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1987), Cellulose Hydrolysis, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTexas A&M UniversityCollege Station

Personalised recommendations