Advertisement

Applied Biochemistry and Biotechnology

, Volume 84, Issue 1–9, pp 401–408 | Cite as

Self-assembling photosynthetic reaction centers on electrodes for current generation

  • Chikashi Nakamura
  • Miki Hasegawa
  • Yoshiaki Yasuda
  • Jun Miyake
Article

Abstract

Photosynthetic reaction centers (RCs) made from photosynthetic organisms can be used in solar batteries because their molecules cause light-induced charge separation. We present a simple immobilization system of the intact RCs from Rhodobacter sphaeroides on an electrode that uses nickel ligand binding by the hexameric histidine tag on H subunit (HHisRC). The binding constant of HHisRC to the nickel-nitrilotriacetic acid (Ni−NTA) chip measured with a surface plasmon resonance instrument was 1.6×108M−1. HHisRCs were immobilized on an indium tin oxide electrode overlaid with an Ni−NTA gold substrate. The photoinduced displacement current of this electrode was measured to estimate the orientation of HHisRC on the electrode, and the detachability of HHisRC from the electrode was determined by using an imidazole solution wash. The direction of the flash-light-induced displacement current suggested that the H subunit side of the immobilized HHisRC faced the surface of the electrode. The photoinduced current disappeared after the electrode was washed in the imidazole solution. This simple immobilization and detachment of HHisRC to the electrode might be useful for making a reproducible photocurrent device.

Index Entries

Photosynthetic reaction center purple bacteria genetic manipulation protein assembly displacement current surface plasmon resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janzen, A. F. and Seibert, M. (1980), Nature 286, 584–585.CrossRefGoogle Scholar
  2. 2.
    Tiede, D. M., Mueller, P., and Dutton, P. L. (1982), Biochim. Biophys. Acta 681, 191–201.CrossRefGoogle Scholar
  3. 3.
    Hirata, Y., Nukanobu, K., Hara, M., Asada, Y., Miyake, J., and Fujihira, M. (1992), Chem. Lett. 2277–2280.Google Scholar
  4. 4.
    Yasuda, Y., Hirata, Y., Sugio, H., Kumei, M., Hara, M., Miyake, J., and Fujihira, M. (1992), Thin Solid Films 210/211, 733–735.CrossRefGoogle Scholar
  5. 5.
    Yasuda, Y., Sugio, H., and Toyotama, H. (1994), Bioelectrochem. Bioenerget. 34, 135–139.CrossRefGoogle Scholar
  6. 6.
    Noda, K., Akutsu, H., Miyake, J., Nakamura, C., and Hara, M. (1998), Supramol. Sci. 5, 773–775.CrossRefGoogle Scholar
  7. 7.
    Ueno, T., Hirata, Y., Hara, M., Arai, T., Sato, A., and Miyake, J. (1995), Materials Sci. Eng. C99, 1–6.CrossRefGoogle Scholar
  8. 8.
    Goldsmith, J. O. and Boxer, S. G. (1996), Biochim. Biophys. Acta 1276, 171–175.CrossRefGoogle Scholar
  9. 9.
    Sockett, R. E., Donohue, T. J., Varga, A. R., and Kaplan, S. (1989), J. Bacteriol. 171, 436–446.Google Scholar
  10. 10.
    Nakamura, C., Kaneko, T., Hasegawa, M., Yang, Q., Hara, M., Shirai, M., and Mivake, J. (1998) in Photosynthesis: Mechanisms and Effects, Garab, G., ed., Kluwer Academic Publishers, Dordrecht, Netherlands, Vol. IV, pp. 3087–3090.Google Scholar
  11. 11.
    Ueno, T., Hara, M., Kamo, N., Fujii, T., and Miyake, J. (1998), J. Biochem. 124, 485–490.Google Scholar
  12. 12.
    Yasuda, Y., Kawakami, Y., and Toyotama, H. (1997), Thin Solid Films 292, 189–191.CrossRefGoogle Scholar
  13. 13.
    Ueno, T., Miyake, J., Fujii, T., Shirai, M., Arai, T., Yasuda, Y., and Hara, M. (1998), Supramol. Sci. 5, 783–786.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Chikashi Nakamura
    • 1
  • Miki Hasegawa
    • 1
  • Yoshiaki Yasuda
    • 2
  • Jun Miyake
    • 1
  1. 1.AIST, MITINational Institute for Advanced Interdisciplinary ResearchTsukubaJapan
  2. 2.Tsukuba Research LaboratoryStanley Electric Co. Ltd.TsukubaJapan

Personalised recommendations