Applied Biochemistry and Biotechnology

, Volume 78, Issue 1–3, pp 547–559 | Cite as

Ethanol production using concentrated oak wood hydrolysates and methods to detoxify

  • Woo Gi Lee
  • Jin Suk Lee
  • Chul Seung Shin
  • Soon Chul Park
  • Ho Nam Chang
  • Yong Keun Chang
Article

Abstract

Ethanol production from concentrated oak wood hydrolysate was carried out to obtain a high ethanol concentration and a high ethanol yield. The effect of added inhibitory compounds, which are typically produced in the pretreatment step of steam-explosion on ethanol fermentation, was also examined. p-Hydroxybenzoic aldehyde, a lignin-degradation product, was the most inhibitory compound tested in this study. Compounds with additional methyl groups had reduced toxicity and the aromatic acids were less toxic than the corresponding aldehydes. The lignin-degradation products were more inhibitory than the sugar-derived products, such as furfural and 5-hydroxymethylfurfural (HMF). Adaptation of yeast cells to the wood hydrolysate and detoxification methods, such as using charcoal and overlime, had some beneficial effects on ethanol production using the concentrated wood hydrolysate. After treatment with charcoal and low-temperature sterilization, the yeast cells could utilize the concentrated wood hydrolysate with 170 as well as 140 g/L glucose, and produce 69.9 and 74.2 g/L ethanol, respectively, with a yield of 0.46–0.48 g ethanol/g glucose. In contrast, the cells could not completely utilize untreated wood hydrolysate with 100 g/L glucose. Low-temperature sterilization, with or without charcoal treatment, was very effective for ethanol production when highly concentrated wood hydrolysates were used. Low-temperature sterilization has advantages over traditional detoxification methods, such as using overlime, ion exchange, and charcoal, because of the reduction in the total cost of ethanol production.

Index Entries

Ethanol concentrated wood hydrolysate oak detoxification inhibitory compounds low-temperature sterilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynd, L. R. (1990), Appl. Biochem. Biotechnol. 24–25, 695–719.Google Scholar
  2. 2.
    Ballerini, D., Desmarquest, J. P., Pourquie J., Native, F., and Rebeller, M. (1994), Bioresource Technol. 50, 17–23.CrossRefGoogle Scholar
  3. 3.
    Olsson, L. and Hahn-Hägerdal, B. (1996), Enzyme Microb. Technol. 18, 312–331.CrossRefGoogle Scholar
  4. 4.
    von Sivers, M. and Zacchi, G. (1996), Bioresource Technol. 56, 131–140.CrossRefGoogle Scholar
  5. 5.
    Brownell, H. H., Yu, E. K. C., and Saddler, J. N. (1986), Biotechnol. Bioeng. 28, 792–801.CrossRefGoogle Scholar
  6. 6.
    Shell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D. (1991), Appl. Biochem. Biotechnol. 28–29, 87–97.Google Scholar
  7. 7.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1992), Appl. Biochem. Biotechnol. 34–35, 37–48.Google Scholar
  8. 8.
    Nunes, A. P., and Pourquie, J. (1996), Bioresource Technol. 57, 107–110.CrossRefGoogle Scholar
  9. 9.
    Mes-Hartree, M., Hogan, C., Hayes, R. D., and Saddler, J. N. (1983), Biotechnol. Lett. 5, 101–106.CrossRefGoogle Scholar
  10. 10.
    Mes-Hartree, M. and Saddler, J. N. (1983), Biotechnol. Lett. 5, 531–536.CrossRefGoogle Scholar
  11. 11.
    Clark, T. A. and Mackie, K. L. (1984), J. Chem. Tech. Biotechnol. 34B, 101–110.Google Scholar
  12. 12.
    Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.CrossRefGoogle Scholar
  13. 13.
    Burtscher, E., Bobleter, O., Schwald, W., Concin, R., and Binder, H. (1987), J. Chromatogr. 390, 401–412.CrossRefGoogle Scholar
  14. 14.
    Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 11, 841–846.CrossRefGoogle Scholar
  15. 15.
    Sanchez, B. and Bautista, J. (1988), Enzyme Microb. Technol. 10, 315–318.CrossRefGoogle Scholar
  16. 16.
    Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1996), Enzyme Microb. Technol. 19, 470–476.CrossRefGoogle Scholar
  17. 17.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.Google Scholar
  18. 18.
    Chung, I. S. and Lee, Y. Y. (1985), Biotechnol. Bioeng. 27, 308–315.CrossRefGoogle Scholar
  19. 19.
    Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1996), Bioresource Technol. 57, 179–185.CrossRefGoogle Scholar
  20. 20.
    Rivard, C. J., Engel, R. E., Hayward, T. K., Nagle, N. J., Hatzis, C., and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 57–58, 183–191.Google Scholar
  21. 21.
    Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G., and Reczey, K. (1997), Enzyme Microb. Technol. 20, 286–293.CrossRefGoogle Scholar
  22. 22.
    Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.Google Scholar
  23. 23.
    Banerjee, N., Bhatnagar, R., and Viswanathan, L. (1981), Enzyme Microb. Technol. 3, 24–28.CrossRefGoogle Scholar
  24. 24.
    Banerjee, N. and Viswanathan, L. (1981), Eur. J. Appl. Microbiol. Biotechnol. 11, 226–228.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Woo Gi Lee
    • 1
    • 2
  • Jin Suk Lee
    • 1
  • Chul Seung Shin
    • 1
  • Soon Chul Park
    • 1
  • Ho Nam Chang
    • 2
  • Yong Keun Chang
    • 2
  1. 1.Biomass Research TeamKorea Institute of Energy ResearchTaejonKorea
  2. 2.BPERC and Department of Chemical EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations