Applied Biochemistry and Biotechnology

, Volume 134, Issue 3, pp 223–232 | Cite as

Lactic acid bacteria production from whey

  • María Elena Mondragón-Parada
  • Minerva Nájera-Martínez
  • Cleotilde Juárez-Ramírez
  • Juvencio Galíndez-Mayer
  • Nora Ruiz-Ordaz
  • Eliseo Cristiani-Urbina
Original Research Articles

Abstract

The main purpose of this work was to isolate and characterize lactic acid bacteria (LAB) strains to be used for biomass production using a whey-based medium supplemented with an ammonium salt and with very low levels of yeast extract (0.25 g/L). Five strains of LAB were isolated from naturally soured milk after enrichment in whey-based medium. One bacterial isolate, designated MNM2, exhibited a remarkable capability to utilize whey lactose and give a high biomass yield on lactose. This strain was identified as Lactobacillus casei by its 16S rDNA sequence. A kinetic study of cell growth, lactose consumption, and titratable acidity production of this bacterial strain was performed in a bioreactor. The biomass yield on lactose, the percentage of lactose consumption, and the maximum increase in cell mass obtained in the bioreactor were 0.165 g of biomass/g of lactose, 100%, and 2.0 g/L, respectively, which were 1.44,1.11, and 2.35 times higher than those found in flask cultures. The results suggest that it is possible to produce LAB biomass from a whey-based medium supplemented with minimal amounts of yeast extract.

Index Entries

Ammonium salts biomass lactic acid bacteria whey yeast extract 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jelen, P. (1992), in Encyclopaedia of Food Science and Technology, vol. 4, Hui, Y. H., ed., John Wiley & Sons, New York, pp. 2835–2845.Google Scholar
  2. 2.
    Zhou, Q. H. and Kosaric, N. (1993), Biotechnol. Lett. 15, 477–482.CrossRefGoogle Scholar
  3. 3.
    Fitzpatrick, J. J., Ahrens, M., and Smith, S. (2001), Process Biochem. 36, 671–675.CrossRefGoogle Scholar
  4. 4.
    Ghaly, A. E., Tango, M. S. A., and Adams, M. A. (2003), Agric. Eng. Int.: CIGR J. Sci. Res. Dev. V, 1–20.Google Scholar
  5. 5.
    Carr, F. J., Chill, D., and Maida, N. (2002), CRC Crit. Rev. Microbiol. 28, 281–370.CrossRefGoogle Scholar
  6. 6.
    Amrane, A. and Prigent, Y. (1993), Biotechnol. Lett. 15, 239–244.CrossRefGoogle Scholar
  7. 7.
    Gaudreau, H., Renard, N., Champagne, C. P., and Van Horn, D. (2002), Can. J. Microbiol. 48, 626–634.CrossRefGoogle Scholar
  8. 8.
    Aeschlimann, A. and von Stockar, U. (1990), Appl. Microbiol. Biotechnol. 32, 398–402.CrossRefGoogle Scholar
  9. 9.
    Lund, B., Norddahl, B. and Ahring, B. (1992), Biotechnol. Lett. 14, 851–856.CrossRefGoogle Scholar
  10. 10.
    Mulligan, C.N., and Gibbs, B.F. (1991), Biotechnol. Appl. Biochem. 14, 41–53.Google Scholar
  11. 11.
    Stanbury, P.F. and Whitaker, A. (1987), in Principles of Fermentation Technology, Pergamon, Oxford, England, pp. 26–73.Google Scholar
  12. 12.
    Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J. (1951), J. Biol. Chem. 193, 265–275.Google Scholar
  13. 13.
    Relman, A.D. (1993), in Diagnostic Molecular Microbiology. (Persing, D.H., Smith, T.F., Tehover, F.C., and White, T.J., eds.) American Society for Microbiology, Washington, DC, pp. 489–495.Google Scholar
  14. 14.
    Cristiani-Urbina, E., Netzahuatl-Muñoz, A.R., Manriquez-Rojas, F.J., Juárez-Ramírez, C., Ruiz-Ordaz, N., and Galíndez-Mayer, J. (2000), Process Biochem. 35, 649–657.CrossRefGoogle Scholar
  15. 15.
    Helrich, K. (1990), Official Methods of Analysis, vol. 2, Association of Official Analytical Chemists, Arlington, VA.Google Scholar
  16. 16.
    Wang, D.I.C., Cooney, C.L., Demain, A.L., Dunnill, P., Humphrey, A.E., and Lilly, M.D. (1979), in Fermentation and Enzyme Technology, John Wiley & Sons, New York, pp. 57–97.Google Scholar
  17. 17.
    Nemcova, R. (1997), Vet. Med. 42, 19–27.Google Scholar
  18. 18.
    Ahmed, F.E. (2003), Trends Biotechnol. 21, 491–497.CrossRefGoogle Scholar
  19. 19.
    Roberfroid, M.D. (2000), Am. J. Clin. Nutr. 71, 1682S-1687S.Google Scholar
  20. 20.
    Farnworth, E.R. (2001), in Handbook of Nutraceuticals and Functional Foods, Wildman R.E.C., Ed., CRC Press, Boca Raton, FL, pp. 407–422.Google Scholar
  21. 21.
    Matsuzaki, T. and Chin, J. (2000), Immunol. Cell Biol. 78, 67–73.CrossRefGoogle Scholar
  22. 22.
    Saarela, M., Mogensen, G., Fondén, R., Mättö, J., and Mattila-Sandholm, T. (2000), J. Biotechnol. 84, 197–215.CrossRefGoogle Scholar
  23. 23.
    Olmos-Dichara, A., Ampe, F., Uribelarrea, J.L., Pareilleux, A., and Goma, G. (1997), Biotechnol. Lett. 19, 709–714.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • María Elena Mondragón-Parada
    • 1
  • Minerva Nájera-Martínez
    • 1
  • Cleotilde Juárez-Ramírez
    • 1
  • Juvencio Galíndez-Mayer
    • 1
  • Nora Ruiz-Ordaz
    • 1
  • Eliseo Cristiani-Urbina
    • 1
  1. 1.Departamento de Ingeniería Bioquímica, Escuele Naciona de Ciencias Biológicasdel I.P.N. Carpio y Plan de Ayala, “Centro Operativo Naranjo”MéxicoMéxico

Personalised recommendations