Applied Biochemistry and Biotechnology

, Volume 130, Issue 1–3, pp 612–620 | Cite as

Reintroduced solids increase inhibitor levels in a pretreated corn stover hydrolysate

  • R. Eric Berson
  • John S. Young
  • Thomas R. Hanley
Session 2 Today's Biorefineries


Following detoxification of the liquid hydrolysate produced in a corn stover pretreatment process, inhibitor levels are seen to increase with the re-addition of solids for the ensuing hydrolysis and fermentation processes. The solids that were separated from the slurry before detoxification of the liquor contain approx 60% (w/w) moisture, and contamination occurs owing to the diffusion of inhibitors from the moisture entrained in the porous structure of the corn stover solids into the bulk fluid. This evidence suggests the need for additional separation and detoxification steps to purge residual inhibitors entrained in the moisture in the solids. An overliming process to remove furans from the hydrolysate failed to reduce total organic acids concentration, so acids were removed by treatment with an activated carbon powder. Smaller carbon doses proved more efficient in removing organic acids in terms of grams of acid removed per gram of carbon powder. Sugar adsorption by the activated carbon powder was minimal.

Index Entries

Activated carbon detoxification organic acids overliming pretreated corn stover hydrolyzate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P. (1999), Appl. Biochem. Biotechnol. 77–79, 133–142.CrossRefGoogle Scholar
  2. 2.
    Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., et al. (1999), Enzyme Microbiol. Technol. 24, 151–159.CrossRefGoogle Scholar
  3. 3.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.Google Scholar
  4. 4.
    Larsson, S., Reimann, A., Nilvebrant, N. O., and Jonsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.CrossRefGoogle Scholar
  5. 5.
    Martinez, A., Rodrigues, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–293.CrossRefGoogle Scholar
  6. 6.
    Mohagheghi, A., Ruth, M., and Schell, D. (2004), Tracking the fate of calcium and sulfur through the overliming process used to condition hydrolysates produced by dilute sulfuric-acid pretreatment of lignocellulosic biomass, presented at the 26th Symposium on Biotechnology for Fuels and Chemicals, Chattanooga, TN.Google Scholar
  7. 7.
    Lee, W. G., Lee, J. S., Shin, C. S., Park, S. C., Chang, H. N., and Chaik, Y. K. (1999), Appl. Biochem. Biotechnol. 77–79, 547–559.CrossRefGoogle Scholar
  8. 8.
    Rivard, C. J., Engel, R. E., Hayard, T. K., Nagle, N. J., Hatzis, C., and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 57–58, 183–191.CrossRefGoogle Scholar
  9. 9.
    Jonsson, L. J., Palmqvist, E., Nilvebrant, N. O., and Hahn-Hagerdal, B. (1998), Appl. Microbiol. Biotechnol. 49, 691–697.CrossRefGoogle Scholar
  10. 10.
    Priddy, S. A. (2002), PhD Dissertation, University of Louisville, Louisville, Kentucky.Google Scholar
  11. 11.
    Priddy S. A. and Hanley, T. R. (2003), Appl. Biochem. Biotechnol. 105–108, 353–364.CrossRefGoogle Scholar
  12. 12.
    Berson, R. E., Young, J. S., Kamer, S. N., and Hanley, T. R. (2005), Appl. Biochem. Biotechnol. in press.Google Scholar
  13. 13.
    Morresi, A. C. and Cheremisinoff, P. N. (1978), In: Carbon Adsorption Handbook, Cheremisinoff, P. N. and Ellerbusch, F., eds., Ann Arbor Science Publishers, Ann Arbor, MI, pp. 1–54.Google Scholar
  14. 14.
    Fein, E. F., Tallim, S. R., and Lawford, G. R. (1984), Can. J. Microb. 30, 682–690.CrossRefGoogle Scholar
  15. 15.
    Frazer, F. R. and McCaskey, T. A. (1989), Biomass. 18, 31–42.CrossRefGoogle Scholar
  16. 16.
    Roberto, I. C., Lacis, L. S., Barbosa, M. F. S., and de Mancilha, I. M. (1991), Process Biochem. 26, 15–21.CrossRefGoogle Scholar
  17. 17.
    Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1997), Enzyme Microb. Technol. 21, 18–24.CrossRefGoogle Scholar
  18. 18.
    Martinez, A., Rodrigues, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000), Biotechnol. Prog. 16, 637–641.CrossRefGoogle Scholar
  19. 19.
    Kamer, S. (2004), Masters thesis, University of Louisville, Louisville, Kentucky.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • R. Eric Berson
    • 1
  • John S. Young
    • 1
  • Thomas R. Hanley
    • 2
  1. 1.Department of Chemical EngineeringUniversity of LouisvilleLouisville
  2. 2.Auburn UniversityAuburn

Personalised recommendations