Applied Biochemistry and Biotechnology

, Volume 130, Issue 1–3, pp 599–611

Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates

  • Björn Alriksson
  • Anders Sjöde
  • Nils-Olof Nilvebrant
  • Leif J. Jönsson
Session 2 Today's Biorefineries

Abstract

Alkaline detoxification strongly improves the fermentability of dilute-acid hydrolysates in the production of bioethanol from lignocellulose with Saccharomyces cerevisiae. New experiments were performed with NH4OH and NaOH to define optimal conditions for detoxification and make a comparison with Ca(OH)2 treatment feasible. As too harsh conditions lead to sugar degradation, the detoxification treatments were evaluated through the balanced ethanol yield, which takes both the ethanol production and the loss of fermentable sugars into account. The optimization treatments were performed as factorial experiments with 3-h duration and varying pH and temperature. Optimal conditions were found roughly in an area around pH 9.0/60°C for NH4OH treatment and in a narrow area stretching from pH 9.0/80°C to pH 12.0/30°C for NaOH treatment. By optimizing treatment with NH4OH, NaOH, and Ca(OH)2, it was possible to find conditions that resulted in a fermentability that was equal or better than that of a reference fermentation of a synthetic sugar solution without inhibitors, regardless of the type of alkali used. The considerable difference in the amount of precipitate generated after treatment with different types of alkali appears critical for industrial implementation.

Index Entries

Ethanol lignocellulose detoxification alkali inhibitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsson, S., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.CrossRefGoogle Scholar
  2. 2.
    Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L.-O. (2000), Biotechnol. Bioeng. 69, 526–536.CrossRefGoogle Scholar
  3. 3.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–93.CrossRefGoogle Scholar
  4. 4.
    Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N.-O., and Jönsson, L. J. (2002), J. Agric. Food Chem. 50, 5318–5325.CrossRefGoogle Scholar
  5. 5.
    Millati, R., Niklasson, C., and Taherzadeh, M. J. (2002), Process Biochem. 38, 515–522.CrossRefGoogle Scholar
  6. 6.
    Sárvári Horváth, I., Sjöde, A., Alriksson, B., Jönsson, L. J., and Nilvebrant, N.-O. (2005), Appl. Biochem. Biotechnol. 121–124, 1031–1044.CrossRefGoogle Scholar
  7. 7.
    Nigam, J. N. (2001), J. Biotechnol. 87, 17–27.CrossRefGoogle Scholar
  8. 8.
    Alriksson, B., Sárvári Horváth, I., Sjöde, A., Nilvebrant, N.-O., and Jönsson, L. J. (2005), Appl. Biochem. Biotechnol. 121–124, 911–922.CrossRefGoogle Scholar
  9. 9.
    Nilvebrant, N.-O., Reimann, A., Larsson, S., and Jönsson, L. J. (2001), Appl. Biochem. Biotechnol. 91–93, 35–49.CrossRefGoogle Scholar
  10. 10.
    Nilvebrant, N.-O., Persson, P., Reimann, A., de Sousa, F., Gorton, L., and Jönsson, L. J. (2003), Appl. Biochem. Biotechnol. 105–108, 615–628.CrossRefGoogle Scholar
  11. 11.
    Sárvári Horváth, I., Sjöde, A., Nilvebrant, N.-O., Zagorodni, A., and Jönsson, L. J. (2004), Appl. Biochem. Biotechnol. 114, 525–538.CrossRefGoogle Scholar
  12. 12.
    Singleton, V. L., Orhofer, R., and Lamuela-Raventos, R. M. (1999), Methods Enzymol. 299, 152–178.CrossRefGoogle Scholar
  13. 13.
    Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., et al. (1999), Enzyme Microb. Technol. 24, 151–159.CrossRefGoogle Scholar
  14. 14.
    Verduyn, C., Postma, E., Scheffer, W. A., and van Dijken, J. P. (1992) Yeast 8, 501–517.CrossRefGoogle Scholar
  15. 15.
    Taherzadeh, M. J., Niklasson, C., and Lidén, G. (1997), Chem. Eng. Sci. 52, 2653–2659CrossRefGoogle Scholar
  16. 16.
    Lawford, H. G. and Rousseau J.D. (2003), Appl. Biochem. Biotechnol. 106, 457–470.CrossRefGoogle Scholar
  17. 17.
    de Bruijn, J. M., Kieboom, A. P. G., van Bekkum, H., and van der Poel, P. W. (1986) Sugar Technol. Rev. 13, 21–52.Google Scholar
  18. 18.
    Van Zyl, C., Prior, B. A., and Du Preez, J. C. (1988), Appl. Biochem. Biotechnol. 17, 357–369.Google Scholar
  19. 19.
    Taherzadeh, M. J., Eklund, R., Gustafsson, L. C., and Lidén, G. (1997) Ind. Eng. Chem. Res. 36, 4659–4665.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Björn Alriksson
    • 1
  • Anders Sjöde
    • 1
  • Nils-Olof Nilvebrant
    • 2
  • Leif J. Jönsson
    • 1
  1. 1.Biochemistry, Division for ChemistryKarlstad UniversitySE-651 88KarlstadSweden
  2. 2.STFI-PackforskStockholmSweden

Personalised recommendations