Applied Biochemistry and Biotechnology

, Volume 129, Issue 1–3, pp 256–264 | Cite as

RSM analysis of the effects of the oxygen transfer coefficient and inoculum size on the xylitol production by Candida guilliermondii

  • Mariana Peñuela Vásquez
  • Maurício Bezerra
  • De SouzaJr.
  • Nei PereiraJr.
Session 1B: Enzyme Catalysis and Engineering


Biotechnology production of xylitol is an excellent alternative to the industrial chemical process for the production of this polyalcohol. In this work the behavior of Candida guilliermondii yeast was studied when crucial process variables were modified. The K La (between 18 and 40/h) and the initial cell mass (between 4 and 10 g) were considered as control variables. A response surface methodology was applied to the experimental design to study the resulting effect when the control variables were modified. A regression model was developed and used to determine an optimal value that was further validated experimentally. The optimal values determined for K La and X 0 were 32.85/h and 9.86 g, respectively, leading to maximum values for productivity (1.628 g/h) and xylitol yield (0.708 g/g).

Index Entries

Xylitol response surface methodology analysis xylose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mussatto, I. S. and e Roberto, I. C. (2002), Biotecnl. Ciência e Desenvolvimento 28, 24–39.Google Scholar
  2. 2.
    Parajó, J. C., Dominguez, H., and Dominguez, J. M. (1998), Bioresour. Technol. 65, 191–201.CrossRefGoogle Scholar
  3. 3.
    Gimenes, M. A. P., Carlos, L. C. S., Faria, L. F. F., and Pereira, Jr., N. (2002), Appl. Biochem. Biotechnol. 98–100, 1049–1059.PubMedCrossRefGoogle Scholar
  4. 4.
    Nolleau, V., Preziosi-Belloy, L. and Navarro J. M. (1995), Biotechnol. Lett. 4, 417–422.CrossRefGoogle Scholar
  5. 5.
    Sen, R. and Swaminathan, T. (1997), Appl. Microbiol. Biotechnol. 47, 358–363.CrossRefGoogle Scholar
  6. 6.
    Sampaio, F. C., De Faveri, D., Mantovani, H. C., Passos, F. L., Perego, P., and Converti, A. (2005), J. Food Eng., in press.Google Scholar
  7. 7.
    Rodrigues, D. C. G. A., Silva S. S., and Felipe, M. G. A. (1998), J. Biotechnol. 62, 73–77.CrossRefGoogle Scholar
  8. 8.
    Silva, C. J. S. M. and Roberto, I. C. (2001), Proc. Biochem. 36, 1119–1124.CrossRefGoogle Scholar
  9. 9.
    Du Preez, J. C. and Van Der Walt, J. P. (1983), Biotechnol. Lett. 6, 395–400.Google Scholar
  10. 10.
    Vásquez, M. P. (2004), M.Sc. Dissertation. School of Chemistry of the, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.Google Scholar
  11. 11.
    Moser, A. (1988) Bioprocess Technol—Kinetics and Reactors, Springer-Verlag, NY.Google Scholar
  12. 12.
    Aguiar, Jr., W. B., Faria, L. F. F., Couto, M. A. P. G., Araujo, O. Q. F. and Pereira, Jr., N. (2002), Biochem. Eng. J. 12, 49–59.CrossRefGoogle Scholar
  13. 13.
    Faria, L. F. F., Gimenes, M. A. P. G., Nobrega, R., and Pereira, Jr., N. (2002), Appl. Biochem. Biotechnol. 98–100, 449–158.PubMedCrossRefGoogle Scholar
  14. 14.
    Montgomery, D. C. (2001) Desing Analysis Experiments. 5th Edition, Wiley, New York.Google Scholar
  15. 15.
    StatSoft, Inc. (2001). statistica (Data analysis software system), version 6, www. Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Mariana Peñuela Vásquez
    • 1
  • Maurício Bezerra
    • 1
  • De SouzaJr.
    • 1
  • Nei PereiraJr.
    • 1
  1. 1.Departamento de Engenharia BioquímicaUniversidade Federal do Rio de Janeiro, Centro de TecnologiaRio de JaneiroBrasil

Personalised recommendations