Applied Biochemistry and Biotechnology

, Volume 129, Issue 1–3, pp 130–152 | Cite as

Biofiltration methods for the removal of phenolic residues

  • Luiz Carlos Martins Das Neves
  • Tábata Taemi Miazaki Ohara Miyamura
  • Dante Augusto Moraes
  • Thereza Christina Vessoni Penna
  • Attilio Converti
Session 1A Feedstock Supply and Logistics


Industrial effluents from the pharmaceutical industry often contain high concentrations of phenolic compounds. The presence of “anthropogenic” organic compounds in the environment is a serious problem for human health; therefore, it merits special attention by the competent public agencies. Different methods have been proposed in the last two decades for the treatment of this kind of industrial residues, the most important of which are those utilizing absorption columns, vaporization and extraction, and biotechnological methods. Biofiltration is a method for the removal of contaminants present in liquid or gaseous effluents by the use of aerobic microorganisms, which are immobilized on solid or porous supports. Although several bacteria can utilize aromatic compounds as carbon and energy source, only a few of them are able to make this biodegradation effectively and with satisfactory rate. For this reason, more investigation is needed to ensure an efficient control of process parameters as well as to select the suited reactor configuration. The aim of this work is to provide an overview on the main aspects of biofiltration for the treatment of different industrial effluents, with particular concern to those coming from pharmaceutical industry and laboratories for the production of galenicals.

Index Entries

Biofiltration phenolic residues bioremediation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edgington, S. M. (1994), Biotechnology 12, 1338–1342.PubMedGoogle Scholar
  2. 2.
    Head, I. M. (1998), Microbiology 144, 599–608.CrossRefGoogle Scholar
  3. 3.
    Eckenfelder, W. W. and Musterman, J. L. (1994), Water Sci. Technol. 29(9), 79–88.Google Scholar
  4. 4.
    Eckenfelder, W. W. and Musterman, J. L. (1994), Water Sci. Technol. 29(9), 79–88.Google Scholar
  5. 4.
    Liu, S. and Suflita, J. M. (1993), Trends Biotechnol. 11, 344–352.PubMedGoogle Scholar
  6. 5.
    Bragg, J. R., Prince, R. C., Harner, K. J., and Altas, R. M. (1994), Nature 368, 413–418.ADSGoogle Scholar
  7. 6.
    Swannell, R. P. J., Lee, K., and McDonagh, M. (1996), Microbiol. Rev. 60, 342–365.PubMedGoogle Scholar
  8. 7.
    Ottengraf, S. P. P., van den Oever, A. H. C., and Kempenaars, F. J. C. M. (1984), In: Innovations in Biotechnology. Houwink, E. H. and van der Meer R. R., eds., Elsevier, Amsterdam, pp. 157–167.Google Scholar
  9. 8.
    Ottengraf, S. P. P., Meesters, J. J. P., van den Oever, A. H. C., and Rozema, H. R. (1986), Bioproc. Eng. 1, 61–69.Google Scholar
  10. 9.
    Button, D. K., Schut, F., Quang, P., Martin, R. M., and Robertson, B. (1993), Environ, Microbiol. 59, 881–891.Google Scholar
  11. 10.
    Watanabe, K. and Baker, P. W. (2000), J. Biosci. Bioeng. 89, 1–11.PubMedGoogle Scholar
  12. 11.
    Zilli, M. and Converti, A. (1999), In: The Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Flickinger, M. C. and Drew, S. W., eds., Wiley, New York, pp. 305–319.Google Scholar
  13. 12.
    Kim, J. H., Oh, K. K., Lee, S. T., and Kim, S. W. (2002), Proc. Biochem. 37, 1367–1373.Google Scholar
  14. 13.
    Zilli, M., Del Borghi, A., and Converti, A. (2000), Appl. Microbiol. Biotechnol. 54, 248–254.PubMedGoogle Scholar
  15. 14.
    Abu Hamed, T., Bayraktar, E., Mehmetoğlu, Ü., and Mehmetoğlu, T., (2004), Biochem. Eng. J. 19, 137–146.Google Scholar
  16. 15.
    Zilli, M., Palazzi, E., Sene, L., Converti, A., and Del Borghi, M. (2001), Proc. Biochem. 37, 423–429.Google Scholar
  17. 16.
    Sene, L., Converti, A., Felipe, M. G. A., and Zilli, M. (2002), Biores. Technol. 83, 153–157.Google Scholar
  18. 17.
    Moharikar, A. and Purohit, H. (2003), Int. Biodeter. Biodegr. 52, 255–260.Google Scholar
  19. 18.
    Vinod, A. V. and Reddy, G. V. (2005), Biochem. Eng. J. 24, 1–10.Google Scholar
  20. 19.
    Monteiro, Á. A. M. G., Boaventura, R. A. R., and Rodrigues, A. E. (2000), Biochem. Eng. J. 6, 45–49.Google Scholar
  21. 20.
    Clarke, K. L., Pugsley, T., and Hill, T. A. (2005), Chem. Eng. Sci. 60, 6909–6918.Google Scholar
  22. 21.
    Prokop, W. H. and Bohn, H. L. (1985), J. Air Pollut. Control Assoc. 35, 1332–1338.Google Scholar
  23. 22.
    Kampbell, D. H., Wilson, J. T., Read, H. W., and Stocksdale, J. (1987), J. Air Pollut. Control Assoc. 37, 1236–1240.Google Scholar
  24. 23.
    Alfani, F., Cantarella, L., Gallifuoco, A., and Cantarella, M. (1990), Acqua-Aria 10, 877–884.Google Scholar
  25. 24.
    Jäger, B. and Jager, J. (1978), Müll und Abfall 2, 48–54.Google Scholar
  26. 25.
    Hartmann, H. (1977), Stuttg. Ver. Siedlungswasserwirstsch 59, 3–19.Google Scholar
  27. 26.
    Thistlethwayte, B., Hardwick, B., and Goleb, E. E. (1973), Chimie Ind. 106, 795–801.Google Scholar
  28. 27.
    Helmer, R. (1974), Ges. Ing. 94, 21–30.Google Scholar
  29. 28.
    Chen, K. C., Lin, W. H., and Liu, Y. C. (2002), Enzyme Microbial Technol. 31, 490–497.Google Scholar
  30. 29.
    Chiangchun, Q., Hanchang, S., Yongming, Z., and Yi, Q. (2003), Proc. Biochem. 38, 1545–1551.Google Scholar
  31. 30.
    Tsai, H. H., Ravindran, V., and Pirbazari, M. (2005), Chem. Eng. Sci. 60, 5620–5636.Google Scholar
  32. 31.
    Luke, A. K. and Burton, S. G. (2001), Enzyme Microbial Technol. 29, 348–356.Google Scholar
  33. 32.
    Kim, D. J. and Kim, H. (2005), Proc. Biochem. 40, 2015–2020.Google Scholar
  34. 33.
    Zaiat, M., Cabral, A. K. A., and Foresti, E. (1996), Wat. Res. 30, 2435–2439.Google Scholar
  35. 34.
    Schmidell, W. and Facciotti, M. C. R. (2001), In: Biotecnologia Industrial. Schmidell, W., Lima, U. A. L., Aquarone, E., and Borzani, W., eds., Edgard Blücher, São Paulo, pp. 179–192.Google Scholar
  36. 35.
    Onysko, K. A., Budman, H. M., and Robinson, C. W. (2000), Biotechnol. Bioeng. 70, 291–299.PubMedGoogle Scholar
  37. 36.
    Onysko, K. A., Robinson, C. W., and Budman, H. M. (2002). Can. J. Chem. Eng. 80, 239–252.CrossRefGoogle Scholar
  38. 37.
    Koch, B., Ostermann, M., Hoke, H., and Hempel, D. C. (1991), Wat. Res. 25, 1–8.Google Scholar
  39. 38.
    Dluhy, M., Sefcik, J., and Bales, V. (1994), Comput. Chem. Eng., 18, S725-S729.Google Scholar
  40. 39.
    Swanson, W. J. and Loeher, R. C. (1997), J. Environ. Eng. 123, 538–546.Google Scholar
  41. 40.
    Cox, H. H. J., Houtman, J. H. M., Doddema, H. J., and Harder, W. (1993), Biotechnol. Lett. 15, 737–742.Google Scholar
  42. 41.
    Cox, H. H. J., Houtman, J. H. M., Doddema, H. J., and Harder, W. (1993), Appl. Microbiol. Biotechnol. 39, 372–376.Google Scholar
  43. 42.
    Arnold, M., Reittu, A., von Wright, A., Martikainen, P. J., and Suihko, M. L. (1997), Appl. Microbiol. Biotechnol. 48, 738–744.PubMedGoogle Scholar
  44. 43.
    Sorial, G. A., Smith, F. L., Suidan, M. T., Pandit, A., Biswas, P., and Brenner, R. C. (1998), Wat. Res. 32, 1593–1603.Google Scholar
  45. 44.
    Kim, D., Cai, Z. L., and Sorial, G. A. (2005), J. Air Waste Manag. Assoc. 55, 200–209.PubMedGoogle Scholar
  46. 45.
    Togna, A. P. and Frisch, S. (1993), 86th Meeting of the Air and Waste Management Association, Denver, CO, 14–18 June 1993.Google Scholar
  47. 46.
    Cox, H. H. J., Moerman, R. E., van Baalen, S., and van Gheiningen, W. N. M. (1997), Biotechnol. Bioeng. 53, 259–266.Google Scholar
  48. 47.
    Sánchez, J. L. G., Kamp, B., Onysko, K. A., Budman, H., and Robinson, C. W. (1998), Biotechnol. Bioeng. 60, 560–567.PubMedGoogle Scholar
  49. 48.
    Kargi, F. and Eker, S. (2005), Proc. Biochem. 40, 2105–2111.Google Scholar
  50. 49.
    Christova, N., Tuleva, B., and Nikolova-Damyanova, B. (2004), J. Biosci. 59, 205–208.Google Scholar
  51. 50.
    Moran, A. C., Olivera, N., Commendatore, M., Esteves, J. L., and Sineriz, F. (2000), Biodegradation 11, 65–71.PubMedGoogle Scholar
  52. 51.
    Feitkenhauer, H., Schnicke, S., Muller, R., and Markl, H. (2001), Appl. Microbiol. Biotechnol. 57, 744–750.PubMedGoogle Scholar
  53. 52.
    Oldenhuis, R., Vink, R. L. J. M., Janssen, D. B., and Witholt, B. (1989), Appl. Environ. Microbiol., 55, 2819–2826.PubMedGoogle Scholar
  54. 53.
    Oldenhuis, R., Kuijk, L., Lammers, A., Jansen, D. B., and Witholt, B. (1989), Appl. Environ. Microbiol. 30, 211–217.Google Scholar
  55. 54.
    Ergas, S. J., Kinney, K., Fuller, M. E., and Scow, K. M. (1994), Biotechnol. Bioeng. 44, 1048–1054.Google Scholar
  56. 55.
    Janssen, D. B., Grobben, G., Hoekstra, R., Oldenhuis, R., and Whitolt, B. (1988), Appl. Microbiol. Biotechnol. 29, 392–399.Google Scholar
  57. 56.
    Ottengraf, S. P. P. (1986), In: Biotechnology. Rehm, H. J. and Reed, G., eds., VCH, Weinheim, pp. 425–452.Google Scholar
  58. 57.
    van der Werf, M. J., Swarts, H. J., and de Bont, J. A. M. (1999), Appl. Environ. Microbiol. 65, 2092–2102.PubMedGoogle Scholar
  59. 58.
    Arand, M., Hallberg, B. M., Zou, J. Y., et al. (2003), EMBO J. 22, 2583–2592.PubMedGoogle Scholar
  60. 59.
    Sabo, F., Motz, U., and Fischer, K. (1993), 86th Meeting of the Air and Waste Management Association, Denver, CO, 14–18 June 1993.Google Scholar
  61. 60.
    Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F., and De Bont, J. A. M. (1989), Appl. Environ. Microbiol. 55, 2850–2855.PubMedGoogle Scholar
  62. 61.
    Dijk, J. A., Stams, A. J. M., Schraa, G., Ballerstedt, H., de Bont, J. A. M., and Gerritse, J. (2003), Appl. Microbiol. Biotech. 63, 68–74.Google Scholar
  63. 62.
    Jang, J. H., Hirai, M., and Shoda, M. (2004), Appl. Microb. Biotechnol. 65, 349–355.Google Scholar
  64. 63.
    Lim, K. H., Park, S. W., Lee, E. J., and Hong, S. H. (2005), Koream J. Chem. Eng. 22, 70–79.Google Scholar
  65. 64.
    Marek, J., Paca, J., Halecky, M., Koutsky, B., Sobotka, M., and Keshavarz, T. (2001), Folia Microb. 46, 205–209.Google Scholar
  66. 65.
    Geng, A. L., Chen, X. G., Gould, W. D., et al. (2004), Wat. Sci. Technol. 50 (4), 291–297.Google Scholar
  67. 66.
    Oyarzun, P., Arancibia, F., Canales, C., and Aroca, G. E. (2003), Proc. Biochem. 39, 165–170.Google Scholar
  68. 67.
    Warhust, A. M. and Fewson, C. A. (1994), J. Appl. Bacteriol. 77, 597–606.Google Scholar
  69. 68.
    Warhust, A. M. and Fewson, C. A. (1994), Crit. Rev. Biotechnol. 14, 29–73.Google Scholar
  70. 69.
    Warhust, A. M., Clarke, K. F., Hill, R. A., Holt, R. A., and Fewson, C. A. (1994), Appl. Environ. Microbiol. 60, 1137–1145.Google Scholar
  71. 70.
    ANVISA—Agência Nacioanl de Vigilância Sanitária, RDC n210, DE 04/08/2003, Regulamento Técnico das Boas Prácticas de Fabricação de Medicamentos, D.O.U.—Diário Oficial da União; Poder Executivo, Brazilia, 14 August 2003.Google Scholar
  72. 71.
    WHO, Phenol Health and Safety Guide—Environmental Health Criteria 161: Phenol, Published by the World Health Organization for the International Programme on Chemical Safety, UNEP, ILO, WHO. Scholar
  73. 72.
    Haldane, J. B. S. (1965), In: Enzymes. MIT Press, Cambridge, MA, p. 84.Google Scholar
  74. 73.
    D'Adamo, P. D., Rozich, A. F., and Gaudy, A. F. (1984), Biotechnol. Bioeng. 26, 397–402.Google Scholar
  75. 74.
    Hill, A. and Robinson, C. W. (1975), Biotechnol. Bioeng. 17, 1599–1615.Google Scholar
  76. 75.
    Yang, R. D. and Humphrey, A. E. (1975), Biotechnol. Bioeng, 17, 1211–1235.PubMedGoogle Scholar
  77. 76.
    Dapaah, S. Y. and Hill, G. A. (1992), Biotechnol. Bioeng. 40, 1353–1358.Google Scholar
  78. 77.
    Hinteregger, C., Leitner, R., Loidl, M., Ferschi, A., and Streichssbier, F. (1992), Appl. Microbiol. Biotechnol. 37, 252–259.PubMedGoogle Scholar
  79. 78.
    Chitra, S., Sekaran, G., Padamavathi, S., and Chandrakasan, G. J. (1995), Gen. Appl. Microbiol. 41, 229–237.Google Scholar
  80. 79.
    Spigno, G., Zilli, M., and Nicolella, C. (2004), Biochem. Eng. J. 19, 267–275.Google Scholar
  81. 80.
    Hill, G. A., Milne, B. J., and Nawrocki, P. A. (1996), Appl. Microbiol. Biotechnol. 46, 163–168.PubMedGoogle Scholar
  82. 81.
    Valenzuela, J., Bumann, U., Céspedes, R., Padilla, L., and González, B. (1997), Appl. Environ. Microbiol. 63, 227–232.PubMedGoogle Scholar
  83. 82.
    Apajalahti, J. H. A. and Salkinoja-Salomen, M. S. (1986), Appl. Microbiol. Biotechnol. 25, 62–67.Google Scholar
  84. 83.
    Oh, J. S. and Han, Y. H. J. (1997), Kor. J. Appl. Microbiol. Biotechnol. 25, 459–463.Google Scholar
  85. 84.
    Morsen, A. and Rehm, H. J. (1987), Appl. Microbiol. Biotechnol. 26, 283–288.Google Scholar
  86. 85.
    Kim, J. H., Oh, K. K., Lee, S. T., and Kim, S. W. (2002), Proc. Biochem. 37, 1367–1373.Google Scholar
  87. 86.
    Dupasquier, D., Revaii, S., and Auria, R. (2002), Environ. Sci. Technol. 36, 247–253.PubMedGoogle Scholar
  88. 87.
    Oh, H. M., Ku, Y. H., Ahn, K. H., Jang, K. Y., Kho, Y. H., and Kwon, G. S. (1995), Korean J. Appl. Microbiol. Technol. 23, 755–762.Google Scholar
  89. 88.
    Weisel, I., Wubker, S. M. and Rehm, H. J. (1993), Appl. Microbiol. Biotechnol. 39, 110–116.Google Scholar
  90. 89.
    Andretta, C. W. S., Rosa, R. M., Tondo, E. C., Gaylarde, C. C., and Henriques, J. A. P. (2004), Chemosphere 55, 631–639.PubMedGoogle Scholar
  91. 90.
    González, G., Herrera, G., García, M. T., and Peña, M. (2001), Biores. Technol. 76, 245–251.Google Scholar
  92. 91.
    Holladay, D. W., Hancher, C. W., Scott, C. D., and Chilcote, D. D. (1978), J. Wat. Pollut. Control Fed. 50, 2573–2588.Google Scholar
  93. 92.
    Beg, S. A. and Hassan, M. M. (1985), Chem. Eng. J. 30, 1–8.Google Scholar
  94. 93.
    González, G. and Herrera, G. (1995), Acta Microbiol. Polonica 44, 285–296.Google Scholar
  95. 94.
    Zilli, M., Converti, A., Lodi, A., Del Borghi, M., and Ferraiolo, G. (1993), Biotechnol. Bioeng. 41, 693–699.Google Scholar
  96. 95.
    Mpanias, C. J. and Baltzis, B. C. (1998), Biotechnol. Bioeng. 59, 328–343.PubMedGoogle Scholar
  97. 96.
    Morales, M., Revah, S., and Auria, R. (1998), Biotechnol. Bioeng. 60, 483–491.PubMedGoogle Scholar
  98. 97.
    Acuña, M. E., Pérez, F., Auria, R., and Revah, S. (1999), Biotechnol. Bioeng. 63, 175–184.PubMedGoogle Scholar
  99. 98.
    Ahimou, F., Jacques, P., and Deleu, M. (2000), Enzyme Microbial Technol. 27, 749–754.Google Scholar
  100. 99.
    Deleu, M. and Paquot, M. (2004) C. R. Chimie 7, 641–646.Google Scholar
  101. 100.
    Desai, J. D. and Banat, I. M. (1997), Microbiol. Mol. Biol. Rev. 61, 47–64.PubMedGoogle Scholar
  102. 101.
    Banat, I. M. (1994), Biores. Technol. 51, 1–12.Google Scholar
  103. 102.
    Cooper, D. G. (1986), Microbiol. Sci. 3, 145–149.PubMedGoogle Scholar
  104. 103.
    Rosenberg, E. (1986), Crit. Rev. Biotechnol. 3, 109–132.CrossRefGoogle Scholar
  105. 104.
    Haferburg, D., Hommel, R., Claus, R., and Kleber, H. P. (1986), Adv. Biochem. Eng. Biotechnol. 33, 53–93.Google Scholar
  106. 105.
    Noah, K. S., Fox, S. L., Bruhn, D. F., Thompson, D. N., and Bala, G. A. (2002), Appl. Biochem. Biotechnol. 98, 803–813.PubMedGoogle Scholar
  107. 106.
    Cameotra, S. S., Hommel, R., Claus, R., and Kleber, H. P. (2004), Curr. Opin. Microbiol. 7, 262–266.PubMedGoogle Scholar
  108. 107.
    Banat, I. M., Makkar, R. S., and Cameotra, S. S. (2000), Appl. Microbiol. Biotechnol. 53, 495–508.PubMedGoogle Scholar
  109. 108.
    Cameotra, S. S. and Makkar, R. S. (1998), Appl. Microbiol. Biotechnol. 50, 520–529.PubMedGoogle Scholar
  110. 109.
    Reis, F. A. S. L., Servulo, F. C., and de França, F. P. (2004) Appl. Biochem. Biotechnol. 113–116, 899–912.PubMedGoogle Scholar
  111. 110.
    Peypoux, F., Bonmatin, J. M., and Wallach, J. (1999), Appl. Microbiol. Biotechnol. 51, 553–563.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Luiz Carlos Martins Das Neves
    • 1
  • Tábata Taemi Miazaki Ohara Miyamura
    • 1
  • Dante Augusto Moraes
    • 1
  • Thereza Christina Vessoni Penna
    • 1
  • Attilio Converti
    • 2
  1. 1.Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências FarmacêuticasUniversidade de São PauloBrazil
  2. 2.Dipartimento di Ingegneria Chimica e di ProcessoUniversità degli Studi di GenovaGenoaItaly

Personalised recommendations