Applied Biochemistry and Biotechnology

, Volume 129, Issue 1–3, pp 104–116 | Cite as

Corn stover fractions and bioenergy

Chemical composition, structure, and response to enzyme pretreatment
  • Danny E. Akin
  • W. Herbert MorrisonIII
  • Luanne L. Rigsby
  • Franklin E. BartonII
  • David S. Himmelsbach
  • Kevin B. Hicks
Session 1A Feedstock Supply and Logistics

Abstract

Information is presented on structure, composition, and response to enzymes of corn stover related to barriers for bioconversion to ethanol. Aromatic compounds occurred in most tissue cell walls. Ferulic acid esterase treatment before cellulase treatment significantly improved dry weight loss and release of phenolic acids and sugars in most fractions over cellulase alone. Leaf fractions were considerably higher in dry weight loss and released sugars with esterase treatment, but stem pith cells gave up the most phenolic acids. Results help identify plant fractions more appropriate for coproducts and bioconversion and those more suitable as residues for soil erosion control.

Index Entries

Zea mays L. lignin phenolic acids esterase cellulase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agricultural Research. (April, 2002). vol 50(4). US Department of Agriculture, Washington, DC, 23p.Google Scholar
  2. 2.
    Sun, Y. and Cheng, J. (2002), Bioresour Technol. 83, 1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    McAloon, A., Taylor, F., Yee W., Ibsen, K., and Wooley, R. (2000), NREL Technical Report NREL/TP-580-28893. National Renewable Energy Laboratory, Golden, CO.Google Scholar
  4. 4.
    Sokhansanj, S., Turhollow, A., Cushman, J., and Cundiff, J. (2002), Biomass Bioenergy 23, 347–355.CrossRefGoogle Scholar
  5. 5.
    Wilhelm, W. W., Johnson, J. M. F., Hatfield, J. L., Voorhees, W. B., and Linden, D. R. (2004), Agron. J. 96, 1–17.CrossRefGoogle Scholar
  6. 6.
    Akin, D. E. (1989), Agron. J. 81, 17–25.MathSciNetCrossRefGoogle Scholar
  7. 7.
    McMillan, J. D. (1994) In: Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P. (eds.), American Chemical Society, Washington, DC, pp. 292–324.Google Scholar
  8. 8.
    Galbe, M. and Zacchi, G. (2002), Appl. Microbiol. Biotechnol. 59, 618–628.PubMedCrossRefGoogle Scholar
  9. 9.
    Schell, D. J., Farmer, J., Newman, M., and McMillan, J. D. (2003), Appl. Biochem. Biotechnol. 105–108, 69–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Tucker, M. P., Kim, K. H., Newman, M. M., and Nguyen, Q. A. (2003), Appl. Biochem. Biotechnol. 105–108, 165–177.PubMedCrossRefGoogle Scholar
  11. 11.
    Keller, F. A., Hamilton, J. E., and Nguyen, Q. A. (2003), Appl. Biochem. Biotechnol. 105–108, 27–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Sarkanen, K. V. and Ludwig, C. H. (1971), Lignins: Occurrence, Formation, Structure, and Reactions. Wiley-Interscience, New York, pp. 1–18.Google Scholar
  13. 13.
    Harris, P. J., Hartley, R. D., and Barton, G. E. (1982), J. Sci. Food Agric. 33, 516–520.CrossRefGoogle Scholar
  14. 14.
    Morrison, W. H. III, Akin, D. E., Ramaswamy, G., and Baldwin, D. (1996), Textile Res. J. 66, 651–656.Google Scholar
  15. 15.
    Anderson, W. F., Peterson, J., Akin, D. E., and Morrison, W. H. III (2005), Appl. Biochem. Biotechnol. 121–124, 303–310.PubMedCrossRefGoogle Scholar
  16. 16.
    Tolera, A. and Sundstol, F. (1999), Anim. Feed Sci. Technol. 81, 1–16.CrossRefGoogle Scholar
  17. 17.
    Akin, D. E. and Chesson, A. (1989), Proc. Int. Grassl. Congr. 16, 1753–1760.Google Scholar
  18. 18.
    Esau, K. (1977), Anatomy of Seed Plants, 2nd ed. John Wiley & Sons, New York.Google Scholar
  19. 19.
    Stern, K. R., Jansky, S., and Bidlack, J. E. (2003), Introductory Plant Biology. Mcgraw-Hill, New York.Google Scholar
  20. 20.
    Akin, D. E., Hartley, R. D., Morrison, W. H. III., and Himmelsbach, D. S. (1990), Crop Sci. 30, 985–989.CrossRefGoogle Scholar
  21. 21.
    Carpita, N. C. (1996), Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.CrossRefGoogle Scholar
  22. 22.
    Akin, D. E., Ames-Gottfred, N., Hartley, R. D., Fulcher, R. G., and Rigsby, L. L. (1990), Crop Sci. 30, 396–411.CrossRefGoogle Scholar
  23. 23.
    Hartley, R. D., Akin, D. E., Himmelsbach, D. S., and Beach, D. C. (1990), J. Sci. Food Agric. 50, 179–189.CrossRefGoogle Scholar
  24. 24.
    Akin, D. E. and Hartley, R. D. (1992), J. Sci. Food Agric. 59, 437–447.CrossRefGoogle Scholar
  25. 25.
    Li, Y., Ruan, R., Chen, P. L., et al. (2004), Trans. ASAE 47, 821–825.Google Scholar
  26. 26.
    Hartley, R. D. and Ford, C. W. (1989), In: Plant Cell Wall Polymers: Biogenesis and Biodegradation. Lewis, N. G. and Paice, M. G. (eds.), American Chemical Society, Washington, DC, pp. 137–145.Google Scholar
  27. 27.
    Borneman, W. S., Hartley, R. D., Himmelsbach, D. S., and Ljungdahl, L. G. (1990), Anal. Biochem. 190, 129–133.PubMedCrossRefGoogle Scholar
  28. 28.
    Grabber, J. H., Ralph, J., and Hatfield, R. D. (2002), J. Agric. Food Chem. 50, 6008–6016.PubMedCrossRefGoogle Scholar
  29. 29.
    Akin, D. E., Borneman, W. S., Rigsby, L. L., and Martin, S. A. (1993), Appl. Environ. Microbiol. 59, 644–647.PubMedGoogle Scholar
  30. 30.
    Faulds, C. B., Zanichelli, D., Crepin, V. F., et al., (2003), J. Cer. Sci. 38, 281–288.CrossRefGoogle Scholar
  31. 31.
    Graf, E. (1992), Free Radical Biol. Med. 13, 435–448.CrossRefGoogle Scholar
  32. 32.
    Garrote, G., Cruz, J. M., Moure, A., Dominguez, H., and Parajo, J. C. (2004), Food Sci. Technol. 15, 191–200.Google Scholar
  33. 33.
    Borneman, W. S., Akin, D. E., and VanEseltine, W. P. (1986), Appl. Environ. Microbiol. 52, 1331–1339.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Danny E. Akin
    • 1
  • W. Herbert MorrisonIII
    • 1
  • Luanne L. Rigsby
    • 1
  • Franklin E. BartonII
    • 1
  • David S. Himmelsbach
    • 1
  • Kevin B. Hicks
    • 2
  1. 1.Russell Research CenterUSDA-ARSAthens
  2. 2.Eastern Regional Research CenterUSDA-ARSWyndmoor

Personalised recommendations