Applied Biochemistry and Biotechnology

, Volume 128, Issue 2, pp 117–129 | Cite as

Surface modification of neural probes with conducting polymer poly(hydroxymethylated-3,4-ethylenedioxythiophene) and its biocompatibility

  • Yinghong Xiao
  • David C. Martin
  • Xinyan Cui
  • Mahesh Shenai


A novel conducting polymer, poly(hydroxymethylated-3,4-ethylenedioxy-thiophene) (PEDOT-MeOH), was electrochemically deposited onto the electrodes of micromachined neural probes. Uniformly distributed film was obtained from aqueous solution when doped with polystyrenesulfonate. The surface morphology was rough and had good cellular adhesion. Impedance spectroscopy showed that the magnitude of coated electrode was lower than that of the bare gold over a range of frequencies from 100 to 105 Hz. Since the biocompatibility of the interface between the neural probes and brain tissue plays an important role when the probes are implanted in the central nervous system for long-term application, biomolecules were incorporated into the coating. Nonapeptide CDPGYIGSR was codeposited as the counterion in the conducting films. The surface morphology of the coating was fuzzy, providing many bioactive sites for interaction with neural cells. The magnitude of impedance was as low as 53 kω at the biologically relevant frequency of 1 kHz. An in vitro experiment demonstrated that the neuroblastoma cells grew preferentially on the PEDOT-MeOH/CDPGYIGSR-coated electrode sites and spread beyond the electrode area.

Index Entries

Conducting polymer surface modification micromachined neural probe biocompatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D. J., Najafi, K., Tanghe, S. J., Evans, D. A., Levy, K. L., Hetke, J. F., Xue, X., Zappia, J. J., and Wiae, K. D. (1989), IEEE Trans. Biomed. Eng. 36, 693–704.CrossRefGoogle Scholar
  2. 2.
    Hetke, J. F., Anderson, D. J., and Wise, K. D. (1996), in Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam.Google Scholar
  3. 3.
    Wise, K. D. and Najafi, K. (1991) Science 254, 1335–1342.CrossRefGoogle Scholar
  4. 4.
    Thomas, C. A., Zong, K., Schottland, P., and Reynolds, J. R. (2000), Adv. Mater. 12, 222–225.CrossRefGoogle Scholar
  5. 5.
    Hutchison, A. S., Lewis, T. W., Moulton, S. E., Spinks, G. M., and Wallace, G. G. (2000), Synth. Met. 113, 121–127.CrossRefGoogle Scholar
  6. 6.
    Seung, L. H. and Hong, J. (2000), Synth. Met. 113, 115–119.CrossRefGoogle Scholar
  7. 7.
    Guiseppi-Elie, A., Wallace, G. G., and Matsue, T. (1998), Handbook of Conducting Polymers, Marcel Dekker, New York.Google Scholar
  8. 8.
    Aasmundtveit, K. E., Samuelsen, E. J., Inganas, O., Pettersson, L. A. A., Johansson, T., and Ferrer, S. (2000), Synth. Met. 113, 93–97.CrossRefGoogle Scholar
  9. 9.
    Schmidt, C. E., Shastri, V. R., Vacanti, J. P., and Langer, R. (1997), Proc. Natl. Acad Sci. USA 94, 8948–8953.CrossRefGoogle Scholar
  10. 10.
    Bobacka, J., Lewenstam, A., and Ivaska A. (2000), J. Electroanal. Chem. 489, 17–27.CrossRefGoogle Scholar
  11. 11.
    Johansson, T., Pettersson, L. A. A., and Inganas, O. (2002), Synth. Met. 129, 269–274.CrossRefGoogle Scholar
  12. 12.
    Cui, X. Y., Hetke, J. F., Wiler, J. A., Anderson, D. J., and Martin, D. C. (2001), Sens. Actuators A Phys. 93, 8–18.CrossRefGoogle Scholar
  13. 13.
    Cui, X. Y., Lee, V. A., Raphael, Y., Wiler, J. A., Hetke, J. F., Anderson, D. J., and Martin, D. C. (2001), J. Biomed. Mater. Res. 56, 261–272.CrossRefGoogle Scholar
  14. 14.
    Zotti, G., Schiavon, G., and Zecchin, S. (1995), Synth. Met. 72, 275–281.CrossRefGoogle Scholar
  15. 15.
    Schlenoff, J. B., Fong, Y., and Xu, H. (1990), Abstr. Pap. Am. Chem. Soc. 200, 92–95.Google Scholar
  16. 16.
    Schlenoff, J. B. and Xu, H. (1992), J. Electrochem. Soc. 139, 2397–2401.CrossRefGoogle Scholar
  17. 17.
    Heywang, G. and Jonas, F. (1992), Adv. Mater. 4, 116–118.CrossRefGoogle Scholar
  18. 18.
    Yamato, H., Ohwa, M., and Wernet, W. (1995), J. Electroanal. Chem. 397, 163–170.CrossRefGoogle Scholar
  19. 19.
    Cui, X. Y. and Martin, D. C. (2003), Sens. Actuators B Chem. 89, 92–102.CrossRefGoogle Scholar
  20. 20.
    Groenendaal, L. B., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J. R. (2000), Adv. Mater. 12, 481–494.CrossRefGoogle Scholar
  21. 21.
    Garner, B., Georgevich, A., Hodgson, A., Liu, L., and Wallace, G. G. (1999), J. Biomed. Mater. Res. 44, 121–129.CrossRefGoogle Scholar
  22. 22.
    Freemantle, M. (2000), Chem. Eng. News. 78, 39–45.Google Scholar
  23. 23.
    Hodgson, A. J., John, M. J., Campbell, T., Georgevich, A., Woodhouse, S., Aoki, T., Ogata, N., and Wallace, G. G. (1996), SPIE 2716, 164–176.CrossRefGoogle Scholar
  24. 24.
    Pande, R., Ruben, G. C., Lim, J. O., Tripathy, S., and Marx, K. A. (1998), Biomaterials 19, 1657–1667.CrossRefGoogle Scholar
  25. 25.
    Cosnier, S. (1999), Biosens. Bioelectron. 14, 443–456.CrossRefGoogle Scholar
  26. 26.
    Graf, J., Iwamoto, Y., Sasaki, M., Martin, G. R., Kleinman, H. K., Robey, F. A., and Yamada, Y. (1987), Cell 48, 989–996.CrossRefGoogle Scholar
  27. 27.
    Borkenhagen, M., Clemence, J. F., Sigrist, H., and Aebischer, P. (1998), J. Biomed. Mater. Res. 40, 392–400.CrossRefGoogle Scholar
  28. 28.
    Kuffler, S. W. (1976) From Neuron to Brain: A Cellular Approach to the Function of the Nervous System, Sinauer Associates, Sunerland, MA.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Yinghong Xiao
    • 1
    • 2
  • David C. Martin
    • 2
    • 3
    • 4
  • Xinyan Cui
    • 5
  • Mahesh Shenai
    • 6
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Materials Science and EngineeringThe University of MichiganAnn Arbor
  3. 3.Department of Macromolecular Science and Engineering CenterThe University of MichiganAnn Arbor
  4. 4.Department of Biomedical EngineeringThe University of MichiganAnn Arbor
  5. 5.Department of BioengineeringUniversity of PittsburghPittsburgh
  6. 6.Center for Biologic NanotechnologyThe University of MichiganAnn Arbor

Personalised recommendations