Applied Biochemistry and Biotechnology

, Volume 128, Issue 1, pp 47–86 | Cite as

The future of coproducts from corn processing

Original Research Articles

Abstract

Increased demand for ethanol as a fuel additive has resulted in dramatic growth in ethanol production. Ethanol is produced from corn by either wet milling or dry-grind processing. In wet milling, the corn kernel is fractionated into different components, resulting in several coproducts. Wet-milling plants are capital intensive because of equipment requirements; they produce large volumes of ethanol and are corporate owned. In dry-grind processing, the corn kernel is not fractionated and only one coproduct, distillers’ dried grains with solubles (DDGS), is generated. Dry-grind plants require less equipment and capital than wet mills. They generate smaller volumes of ethanol, are producer owned, and add direct benefits to rural economies. Most of the increase in ethanol production during the past decade is attributed to growth in the dry-grind industry. The marketing of coproducts provides income to offset processing costs. For dry-grind plants, this is especially important, because only one coproduct is available. Several issues could affect DDGS marketing. The increasing volume of DDGS accompanying ethanol production could reduce market value; high phosphorous content could limit the use of DDGS, because of animal waste disposal issues. Water removal is a costly processing step and affects the economics of ethanol processing. Technologies to remove germ and fiber from DDGS could produce a new coproduct suitable for feeding to nonruminants; this would expand the markets for DDGS. Reducing phosphorus in DDGS would sustain markets for conventional DDGS. The development of more efficient methods of water removal would increase the efficiency of ethanol processing and reduce the costs of processing. New technologies could contribute to greater stability of dry-grind plants.

Index Entries

Distillers’ dried grains with solubles dry-grind process wet milling dry milling ruminants pericarp endosperm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    RFA (2005), Renewable fuels outlook 2005, Renewable Fuels Association, Washington, DC, www.ethanolrfa.org.Google Scholar
  2. 2.
    ERS. (2005) Feed grains data delivery system, Economic Research Service, USDA, www.ers.usda.gov/db/feedgrains/.Google Scholar
  3. 3.
    Shapouri, H., Duffield, J. A., and Graboski, M. S. (1995), Estimating the Net Energy Balance of Corn Ethanol. AER-721. USDA Economic Research Service, Washington, DC.Google Scholar
  4. 4.
    Shapouri, H., Duffield, J. A., and Wang, M. (2002), The Energy Balance of Corn Ethanol: An Update. AER-814. USDA Office of the Chief Economist, Washington, DC.Google Scholar
  5. 5.
    Shapouri, H., Duffield, J. A., and Wang, M. (2003), Transactions of the ASAE 46(4), 959–968.Google Scholar
  6. 6.
    Rausch, K. D., Belyea, R. L., Singh, V., Johnston, D. B., Clevenger, T. E., and Tumbleson, M. E. 2003. in Proceedings of the International Starch Technology Conference, Urbana, IL, p. 134.Google Scholar
  7. 7.
    Rausch, K. D., Thompson, C. I., Belyea, R. L., and Tumbleson, M. E. (2003), Bioresour. Technol. 90, 49–54.CrossRefGoogle Scholar
  8. 8.
    Loy, D. D. and Wright, K. N. (2003), in Corn: Chemistry and Technology, 2nd ed., (White, P. J. and Johnson, L. A., eds.), American Association of Cereal Chemistry, St. Paul, MN, pp. 571–603.Google Scholar
  9. 9.
    Duensing, W. J., Roskens, A. B., and Alexander, R. J. (2003), in Corn: Chemistry and Technology, 2nd ed., (White, P. J. and Johnson, L. A., eds.), American Association of Cereal Chemists, St. Paul, MN, pp. 407–448.Google Scholar
  10. 10.
    Alexander, R. J. (1987), in Corn: Chemistry and Technology, 1st ed., (Watson, S. A. and Ramstad, P. E., eds.), American Association of Cereal Chemists, St. Paul, MN, pp. 351–375.Google Scholar
  11. 11.
    Belyea, R. L., Wallig, M. A., Eckhoff, S. R., and Tumbleson, M. E. (1998), Bioresour. Technol. 66, 207–212.CrossRefGoogle Scholar
  12. 12.
    Maisch, W. F. (2003), in Corn: Chemistry and Technology, 2nd ed., (White, P. J. and Johnson, L. A., eds.), American Association of Cereal Chemists, St. Paul, MN, pp. 695–721.Google Scholar
  13. 13.
    Christianson, D. D., Cavins, J. F., and Wall, J. S. (1965), J. Agric. Food Chem. 13, 378–380.CrossRefGoogle Scholar
  14. 14.
    Rausch, K. D. (2002), Starch/Staerke 54, 273–284.CrossRefGoogle Scholar
  15. 15.
    Johnson, L. A. and May, J. B. (2003), Corn: Chemistry and Technology, 2nd ed., (White, P. J. and Johnson, L. A., eds.). American Association of Cereal Chemists, St. Paul, MN, pp. 449–494.Google Scholar
  16. 16.
    Meredith, J. (2003), in The Alcohol Textbook 4th ed., (Jacques, K. A., Lyons, T. P., and Kelsall, D. R. eds.), Nottingham University Press, Nottingham, UK.Google Scholar
  17. 17.
    Singh, V., Johnston, D. B., Naidu, K., Rausch, K. D., Belyea, R. L., and Tumbleson, M. E. (2005), Cereal Chem. 82, 187–190.Google Scholar
  18. 18.
    Brekke, O. L. (1970), in Corn: Culture, Processing Products, (Inglett, G. E., ed.), AVI Publishing, Westport, CT, pp. 262–291.Google Scholar
  19. 19.
    NRC. (1980), Mineral tolerances of domestic animals, National Research Council, National Academy of Science, Washington, DC.Google Scholar
  20. 20.
    Wright, K. N. (1987), in Corn: Chemistry and Technology, 1st ed., (Watson, S. A. and Ramstad, P. E., eds.), American Association of Cereal Chemists, St. Paul, MN, p. 448.Google Scholar
  21. 21.
    Krishnamoorthy, U., Sniffen, C. J., and Van Soest, P. J. (1982), in Proceedings of the Cornell Nutritional Conference, Syracuse, NY, p. 95–102.Google Scholar
  22. 22.
    Morse, D., Head, H. H., Wilcox, C. J., Van Horn, H. H., Hissem, C. D., and Harris, Jr., B. (1992), J. Dairy Sci. 75, 3039–3049.Google Scholar
  23. 23.
    Dou, Z., Galligan, D. T., and Ramberg, Jr., C. F. (2001), J. Dairy Sci. 84, 966–973.Google Scholar
  24. 24.
    Rotz, C. A., Sharpley, A. N., Satter, L. D., Gburek, W. J., and Sanderson, M. A. (2002), J. Dairy Sci. 85, 3142–3153.Google Scholar
  25. 25.
    Spears, R. A., Young, A. J., and Kohn, R. A. (2003), J. Dairy Sci. 86, 688–695.Google Scholar
  26. 26.
    Tamminga, S. (1992), J. Dairy Sci. 75, 345–357.CrossRefGoogle Scholar
  27. 27.
    Van Horn, H. H., Newton, G. L., and Kunkle, W. E. (1996), J. Anim. Sci. 74, 3082–3102.Google Scholar
  28. 28.
    Firkins, J. L. (2003), in Proceedings of the 3rd National Alternative Feeds Symposium, Kansas City, MO, p. 85–102.Google Scholar
  29. 29.
    Fellner, V. and Belyea, R. L. (1991), J. Dairy Sci. 74, 996–1005.CrossRefGoogle Scholar
  30. 30.
    Van Soest, P. J. (1982), Nutritional Ecology of the Ruminant, Durham and Downey, Portland, OR.Google Scholar
  31. 31.
    Shurson, J., Spiehs, M., Whitney, M., et al. (2001), in 62nd Minnesota Nutritional Conference & Minnesota Corn Growers Association Technology Symposium, Bloomington, MN, p. 27–52.Google Scholar
  32. 32.
    Clevenger, T. E., Singh, V., Belyea, R. L., Johnston, D. B., Tumbleson, M. E. and Rausch, K. D. (2004), in Proceedings of the Corn Utilization Technology Conference, NCGA, St. Louis, MO.Google Scholar
  33. 33.
    Kung, L., Bracht, J. P., Hession, A. O., and Tavares, J. Y. (1998), Feedstuffs 72, 12–17.Google Scholar
  34. 34.
    Schingoethe, D. J., Clark, A. K., and Voelker, H. H. (1983), J. Dairy Sci. 66, 345–349.Google Scholar
  35. 35.
    Powers, W. J., Van Horn, H. H., Harris, B., and Wilcox, C. J. (1995), J. Dairy Sci. 78, 388–396.CrossRefGoogle Scholar
  36. 36.
    Howard, W. T. and Shaver, R. D. (1997), FEEDVAL: Comparative values calculated from crude protein, TDN, Ca and P. Reference feeds used to calculate value of nutrients. www.wisc.edu/dysci/uwex/nutritn/spreadsheets/FEEDVAL University of Wisconsin, Madison, WI.Google Scholar
  37. 37.
    BFBB. (2003), Byproduct Feed Bulletin Board, agebb.missouri.edu/dairy/byprod/bplist.asp Departments of Agricultural Economics and Animal Science, University of Missouri, Columbia, MO.Google Scholar
  38. 38.
    Arosemena, A., DePeters, E. J., and Fadel, J. G. (1995), Anim. Feed Sci. Technol. 54, 103–120.CrossRefGoogle Scholar
  39. 39.
    Belyea, R. L., Steevens, B. J., Restrepo, R. R., and Clubb, A. P. (1989), J. Dairy Sci. 72, 2339–2345.CrossRefGoogle Scholar
  40. 40.
    Belyea, R. L., Rausch, K. D., and Tumbleson, M. E. (2004), Bioresour. Technol. 94, 293–298.CrossRefGoogle Scholar
  41. 41.
    Rausch, K. D., Johnston, D. B., Singh, V., Clevenger, T. E., Tumbleson, M. E., and Belyea, R. L. (2004), in Proceedings of the Corn Utilization Technology Conference, NCGA, St. Louis, MO.Google Scholar
  42. 42.
    Clevenger, T. E., Johnston, D. B., Belyea, R. L., Singh, V., Tumbleson, M. E. and Rausch, K. D. (2004), in Proceedings of the Corn Utilization Technology Conference, NCGA, St. Louis, MO.Google Scholar
  43. 43.
    Lory, J. A. (1999) Managing manure phosphorus to protect water quality. Extension Guidesheet G9182. University of Missouri, Columbia, MO.Google Scholar
  44. 44.
    MASS. (2004), Annual Bulletin 2004, Minnesota Agricultural Statistics Service, USDA and Minnesota Department of Agriculture, St. Paul, MN.Google Scholar
  45. 45.
    Cicuttini, A., Kollacks, W. A., and Rekers, C. J. N. (1983), Starch/Staerke 35, 149–154.CrossRefGoogle Scholar
  46. 46.
    APV. (2003), APV Dryer Handbook, Invensys APV, Rosemount, IL, p. 57.Google Scholar
  47. 47.
    Kollacks, W. A. and Rekers, C. J. N. (1988), Starch/Staere 40, 88–94.CrossRefGoogle Scholar
  48. 48.
    Singh, V. and Eckhoff, S. R. (1996), Cereal Chem. 73, 716–720.Google Scholar
  49. 49.
    Singh, V. and Eckhoff, S. R. (1997), Cereal Chem. 74, 462–466.Google Scholar
  50. 50.
    Singh, V., Moreau, R. A., Hicks, K. B., and Eckhoff, S. R. (2000), Cereal Chem. 78, 46–49.Google Scholar
  51. 51.
    Wahjudi, J., Xu, L., Wang, P., et al. (2000), Cereal Chem. 77, 640–644.Google Scholar
  52. 52.
    Singh, V., Moreau, R. A., Doner, L. W., Eckhoff, S. R., and Hicks, K. B. (1999), Cereal Chem. 76, 868–872.Google Scholar
  53. 53.
    Singh, V., Panchal, C. B., and Eckhoff, S. R. (1999), Cereal Chem. 76, 846–849.Google Scholar
  54. 54.
    Taylor, F., McAloon, A. J., Craig, Jr., J. C., Yang, P., Wahjudi, J., and Eckhoff, S. R. (2001), Appl. Biochem. Biotechnol. 94, 41–49.CrossRefGoogle Scholar
  55. 55.
    Moreau, R. A., Singh, V., Eckhoff, S. R., Powell, M. J., Hicks, K. B. and Norton, R. A. (1999), Cereal Chem. 76, 449–451.Google Scholar
  56. 56.
    Johnston, D. B. and Singh, V. (2001), Cereal Chem. 78, 405–411.Google Scholar
  57. 57.
    Johnston, D. B. and Singh, V. (2004), Cereal Chem. 81, 626–632.Google Scholar
  58. 58.
    Johnston, D. B., McAloon, A. J., Moreau, R. A., Hicks, K. B., and Singh, V. (2005) JAOCS 82, 603–608.CrossRefGoogle Scholar
  59. 59.
    Wu, Y. V. (1988), Cereal Chem. 65, 345–348.Google Scholar
  60. 60.
    Wu, Y. V. (1988), Cereal Chem. 65, 105–109.Google Scholar
  61. 61.
    Wu, Y. V. and Sexson, K. R. (1985), JAOCS 62, 92–96.CrossRefGoogle Scholar
  62. 62.
    Wu, Y. V., Sexson, K. R., and Wall, J. S. (1983), Cereal Chem. 60, 248–251.Google Scholar
  63. 63.
    Templin, T. L., Johnston, D. B., Singh, V., Tumbleson, M. E., Belyea, R. L., and Rausch, K. D. (2005), Bioresour. Technol, in press.Google Scholar
  64. 64.
    Thompson, C. I., Rausch, K. D., Belyea, R. L., and Tumbleson, M. E. (2005), Bioresour. Technol. 97, 348–354.CrossRefGoogle Scholar
  65. 65.
    Rausch, K. D., Raskin, L. M., Belyea, R. L., et al., (2005), Cereal Chem. 82, 431–435.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.Agricultural and Biological Engineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbana
  2. 2.Animal Sciences DepartmentUniversity of MissouriColumbia

Personalised recommendations